Files
dify/api/tasks/trigger_processing_tasks.py
Harry eab03e63d4 refactor(trigger): rename request logs API and enhance logging functionality
- Renamed `TriggerSubscriptionBuilderRequestLogsApi` to `TriggerSubscriptionBuilderLogsApi` for clarity.
- Updated the API endpoint to retrieve logs for subscription builders.
- Enhanced logging functionality in `TriggerSubscriptionBuilderService` to append and list logs more effectively.
- Refactored trigger processing tasks to improve naming consistency and clarity in logging.

🤖 Generated with [Claude Code](https://claude.ai/code)
2025-09-04 21:11:25 +08:00

140 lines
4.9 KiB
Python

"""
Celery tasks for async trigger processing.
These tasks handle trigger workflow execution asynchronously
to avoid blocking the main request thread.
"""
import logging
from celery import shared_task
from sqlalchemy.orm import Session
from core.plugin.entities.plugin import TriggerProviderID
from core.plugin.utils.http_parser import deserialize_request
from core.trigger.trigger_manager import TriggerManager
from extensions.ext_database import db
from extensions.ext_storage import storage
from models.trigger import TriggerSubscription
from services.trigger_service import TriggerService
logger = logging.getLogger(__name__)
# Use workflow queue for trigger processing
TRIGGER_QUEUE = "triggered_workflow_dispatcher"
@shared_task(queue=TRIGGER_QUEUE, bind=True, max_retries=3)
def dispatch_triggered_workflows_async(
self,
endpoint_id: str,
provider_id: str,
subscription_id: str,
triggers: list[str],
request_id: str,
) -> dict:
"""
Dispatch triggers asynchronously.
Args:
endpoint_id: Endpoint ID
provider_id: Provider ID
subscription_id: Subscription ID
triggers: List of triggers to dispatch
request_id: Unique ID of the stored request
Returns:
dict: Execution result with status and dispatched trigger count
"""
try:
logger.info(
"Starting async trigger dispatching for endpoint=%s, triggers=%s, request_id=%s",
endpoint_id,
triggers,
request_id,
)
# Load request from storage
try:
serialized_request = storage.load_once(f"triggers/{request_id}")
request = deserialize_request(serialized_request)
except Exception as e:
logger.exception("Failed to load request %s", request_id, exc_info=e)
return {"status": "failed", "error": f"Failed to load request: {str(e)}"}
with Session(db.engine) as session:
# Get subscription
subscription = session.query(TriggerSubscription).filter_by(id=subscription_id).first()
if not subscription:
logger.error("Subscription not found: %s", subscription_id)
return {"status": "failed", "error": "Subscription not found"}
# Get controller
controller = TriggerManager.get_trigger_provider(subscription.tenant_id, TriggerProviderID(provider_id))
if not controller:
logger.error("Controller not found for provider: %s", provider_id)
return {"status": "failed", "error": "Controller not found"}
# Dispatch each trigger
dispatched_count = 0
for trigger in triggers:
try:
trigger = controller.get_trigger(trigger)
if trigger is None:
logger.error(
"Trigger '%s' not found in provider '%s'",
trigger,
provider_id,
)
continue
TriggerService.process_triggered_workflows(
subscription=subscription,
trigger=trigger,
request=request,
)
dispatched_count += 1
except Exception:
logger.exception(
"Failed to dispatch trigger '%s' for subscription %s",
trigger,
subscription_id,
)
# Continue processing other triggers even if one fails
continue
logger.info(
"Completed async trigger dispatching: processed %d/%d triggers",
dispatched_count,
len(triggers),
)
# Note: Stored request is not deleted here. It should be handled by:
# 1. Storage system's lifecycle policy (e.g., S3 lifecycle rules for triggers/* prefix)
# 2. Or periodic cleanup job if using local/persistent storage
# This ensures request data is available for debugging/retry purposes
return {
"status": "completed",
"dispatched_count": dispatched_count,
"total_count": len(triggers),
}
except Exception as e:
logger.exception(
"Error in async trigger dispatching for endpoint %s",
endpoint_id,
)
# Retry the task if not exceeded max retries
if self.request.retries < self.max_retries:
raise self.retry(exc=e, countdown=60 * (self.request.retries + 1))
# Note: Stored request is not deleted even on failure. See comment above for cleanup strategy.
return {
"status": "failed",
"error": str(e),
"retries": self.request.retries,
}