Files
dolphin/Source/Core/Core/FifoPlayer/FifoAnalyzer.cpp
Léo Lam 72e3f1ecec Remove unnecessary ConfigManager includes
Making changes to ConfigManager.h has always been a pain, because
it means rebuilding half of Dolphin, since a lot of files depend on
and include this header.

However, it turns out some includes are unnecessary. This commit
removes ConfigManager includes from files which don't contain
SConfig or GPUDeterminismMode or GPU_DETERMINISM (which means the
ConfigManager include is not used).

(I've also had to get rid of some indirect includes.)
2016-11-27 22:38:38 +01:00

292 lines
6.4 KiB
C++

// Copyright 2011 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <numeric>
#include "Core/FifoPlayer/FifoAnalyzer.h"
#include "Common/Assert.h"
#include "Core/Core.h"
#include "Core/FifoPlayer/FifoRecordAnalyzer.h"
#include "VideoCommon/OpcodeDecoding.h"
#include "VideoCommon/VertexLoader.h"
#include "VideoCommon/VertexLoader_Normal.h"
#include "VideoCommon/VertexLoader_Position.h"
#include "VideoCommon/VertexLoader_TextCoord.h"
namespace FifoAnalyzer
{
bool s_DrawingObject;
FifoAnalyzer::CPMemory s_CpMem;
void Init()
{
VertexLoader_Normal::Init();
}
u8 ReadFifo8(const u8*& data)
{
u8 value = data[0];
data += 1;
return value;
}
u16 ReadFifo16(const u8*& data)
{
u16 value = Common::swap16(data);
data += 2;
return value;
}
u32 ReadFifo32(const u8*& data)
{
u32 value = Common::swap32(data);
data += 4;
return value;
}
u32 AnalyzeCommand(const u8* data, DecodeMode mode)
{
const u8* dataStart = data;
int cmd = ReadFifo8(data);
switch (cmd)
{
case GX_NOP:
case 0x44:
case GX_CMD_INVL_VC:
break;
case GX_LOAD_CP_REG:
{
s_DrawingObject = false;
u32 cmd2 = ReadFifo8(data);
u32 value = ReadFifo32(data);
LoadCPReg(cmd2, value, s_CpMem);
break;
}
case GX_LOAD_XF_REG:
{
s_DrawingObject = false;
u32 cmd2 = ReadFifo32(data);
u8 streamSize = ((cmd2 >> 16) & 15) + 1;
data += streamSize * 4;
break;
}
case GX_LOAD_INDX_A:
case GX_LOAD_INDX_B:
case GX_LOAD_INDX_C:
case GX_LOAD_INDX_D:
{
s_DrawingObject = false;
int array = 0xc + (cmd - GX_LOAD_INDX_A) / 8;
u32 value = ReadFifo32(data);
if (mode == DECODE_RECORD)
FifoRecordAnalyzer::ProcessLoadIndexedXf(value, array);
break;
}
case GX_CMD_CALL_DL:
// The recorder should have expanded display lists into the fifo stream and skipped the call to
// start them
// That is done to make it easier to track where memory is updated
_assert_(false);
data += 8;
break;
case GX_LOAD_BP_REG:
{
s_DrawingObject = false;
ReadFifo32(data);
break;
}
default:
if (cmd & 0x80)
{
s_DrawingObject = true;
int sizes[21];
FifoAnalyzer::CalculateVertexElementSizes(sizes, cmd & GX_VAT_MASK, s_CpMem);
// Determine offset of each element that might be a vertex array
// The first 9 elements are never vertex arrays so we just accumulate their sizes.
int offsets[12];
int offset = std::accumulate(&sizes[0], &sizes[9], 0u);
for (int i = 0; i < 12; ++i)
{
offsets[i] = offset;
offset += sizes[i + 9];
}
int vertexSize = offset;
int numVertices = ReadFifo16(data);
if (mode == DECODE_RECORD && numVertices > 0)
{
for (int i = 0; i < 12; ++i)
{
FifoRecordAnalyzer::WriteVertexArray(i, data + offsets[i], vertexSize, numVertices);
}
}
data += numVertices * vertexSize;
}
else
{
PanicAlert("FifoPlayer: Unknown Opcode (0x%x).\n", cmd);
return 0;
}
break;
}
return (u32)(data - dataStart);
}
void LoadCPReg(u32 subCmd, u32 value, CPMemory& cpMem)
{
switch (subCmd & 0xF0)
{
case 0x50:
cpMem.vtxDesc.Hex &= ~0x1FFFF; // keep the Upper bits
cpMem.vtxDesc.Hex |= value;
break;
case 0x60:
cpMem.vtxDesc.Hex &= 0x1FFFF; // keep the lower 17Bits
cpMem.vtxDesc.Hex |= (u64)value << 17;
break;
case 0x70:
_assert_((subCmd & 0x0F) < 8);
cpMem.vtxAttr[subCmd & 7].g0.Hex = value;
break;
case 0x80:
_assert_((subCmd & 0x0F) < 8);
cpMem.vtxAttr[subCmd & 7].g1.Hex = value;
break;
case 0x90:
_assert_((subCmd & 0x0F) < 8);
cpMem.vtxAttr[subCmd & 7].g2.Hex = value;
break;
case 0xA0:
cpMem.arrayBases[subCmd & 0xF] = value;
break;
case 0xB0:
cpMem.arrayStrides[subCmd & 0xF] = value & 0xFF;
break;
}
}
void CalculateVertexElementSizes(int sizes[], int vatIndex, const CPMemory& cpMem)
{
const TVtxDesc& vtxDesc = cpMem.vtxDesc;
const VAT& vtxAttr = cpMem.vtxAttr[vatIndex];
// Colors
const u64 colDesc[2] = {vtxDesc.Color0, vtxDesc.Color1};
const u32 colComp[2] = {vtxAttr.g0.Color0Comp, vtxAttr.g0.Color1Comp};
const u32 tcElements[8] = {vtxAttr.g0.Tex0CoordElements, vtxAttr.g1.Tex1CoordElements,
vtxAttr.g1.Tex2CoordElements, vtxAttr.g1.Tex3CoordElements,
vtxAttr.g1.Tex4CoordElements, vtxAttr.g2.Tex5CoordElements,
vtxAttr.g2.Tex6CoordElements, vtxAttr.g2.Tex7CoordElements};
const u32 tcFormat[8] = {vtxAttr.g0.Tex0CoordFormat, vtxAttr.g1.Tex1CoordFormat,
vtxAttr.g1.Tex2CoordFormat, vtxAttr.g1.Tex3CoordFormat,
vtxAttr.g1.Tex4CoordFormat, vtxAttr.g2.Tex5CoordFormat,
vtxAttr.g2.Tex6CoordFormat, vtxAttr.g2.Tex7CoordFormat};
// Add position and texture matrix indices
u64 vtxDescHex = cpMem.vtxDesc.Hex;
for (int i = 0; i < 9; ++i)
{
sizes[i] = vtxDescHex & 1;
vtxDescHex >>= 1;
}
// Position
sizes[9] = VertexLoader_Position::GetSize(vtxDesc.Position, vtxAttr.g0.PosFormat,
vtxAttr.g0.PosElements);
// Normals
if (vtxDesc.Normal != NOT_PRESENT)
{
sizes[10] = VertexLoader_Normal::GetSize(vtxDesc.Normal, vtxAttr.g0.NormalFormat,
vtxAttr.g0.NormalElements, vtxAttr.g0.NormalIndex3);
}
else
{
sizes[10] = 0;
}
// Colors
for (int i = 0; i < 2; i++)
{
int size = 0;
switch (colDesc[i])
{
case NOT_PRESENT:
break;
case DIRECT:
switch (colComp[i])
{
case FORMAT_16B_565:
size = 2;
break;
case FORMAT_24B_888:
size = 3;
break;
case FORMAT_32B_888x:
size = 4;
break;
case FORMAT_16B_4444:
size = 2;
break;
case FORMAT_24B_6666:
size = 3;
break;
case FORMAT_32B_8888:
size = 4;
break;
default:
_assert_(0);
break;
}
break;
case INDEX8:
size = 1;
break;
case INDEX16:
size = 2;
break;
}
sizes[11 + i] = size;
}
// Texture coordinates
vtxDescHex = vtxDesc.Hex >> 17;
for (int i = 0; i < 8; i++)
{
sizes[13 + i] = VertexLoader_TextCoord::GetSize(vtxDescHex & 3, tcFormat[i], tcElements[i]);
vtxDescHex >>= 2;
}
}
}