diff --git a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-326-modulo-summations.md b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-326-modulo-summations.md index ededd29e91e..03e4f6359f9 100644 --- a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-326-modulo-summations.md +++ b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-326-modulo-summations.md @@ -8,7 +8,7 @@ dashedName: problem-326-modulo-summations # --description-- -Let an be a sequence recursively defined by: $a_1 = 1$, $\displaystyle a_n = \left(\sum_{k = 1}^{n - 1} k \times a_k\right)\bmod n$. +Let $a_n$ be a sequence recursively defined by: $a_1 = 1$, $\displaystyle a_n = \left(\sum_{k = 1}^{n - 1} k \times a_k\right)\bmod n$. So the first 10 elements of $a_n$ are: 1, 1, 0, 3, 0, 3, 5, 4, 1, 9.