mirror of
https://github.com/freeCodeCamp/freeCodeCamp.git
synced 2026-01-08 12:04:29 -05:00
chore(i18n,learn): processed translations (#48693)
This commit is contained in:
@@ -10,16 +10,16 @@ dashedName: demographic-data-analyzer
|
||||
|
||||
你将使用<a href="https://replit.com/github/freeCodeCamp/boilerplate-demographic-data-analyzer" target="_blank" rel="noopener noreferrer nofollow">我们在 Replit 的初始化项目</a>来完成这个项目。
|
||||
|
||||
- Start by importing the project on Replit.
|
||||
- Next, you will see a `.replit` window.
|
||||
- Select `Use run command` and click the `Done` button.
|
||||
- 首先在 Replit 中导入项目。
|
||||
- 接着,你将看到一个 `.replit` 窗口。
|
||||
- 选择 `Use run command` 并点击 `Done` 按钮。
|
||||
|
||||
|
||||
我们仍在开发 Python 课程的交互式教学部分。 目前,你可以在 YouTube 上通过 freeCodeCamp.org 上传的一些视频学习这个项目相关的知识。
|
||||
|
||||
- <a href="https://www.freecodecamp.org/news/python-for-everybody/" target="_blank" rel="noopener noreferrer nofollow">Python for Everybody Video Course</a> (14 hours)
|
||||
- <a href="https://www.freecodecamp.org/news/python-for-everybody/" target="_blank" rel="noopener noreferrer nofollow">给所有人的 Python 课程</a>(14 小时)
|
||||
|
||||
- <a href="https://www.freecodecamp.org/news/how-to-analyze-data-with-python-pandas/" target="_blank" rel="noopener noreferrer nofollow">How to Analyze Data with Python Pandas</a> (10 hours)
|
||||
- <a href="https://www.freecodecamp.org/news/how-to-analyze-data-with-python-pandas/" target="_blank" rel="noopener noreferrer nofollow">如何使用 Python Pandas 分析数据</a>(10 小时)
|
||||
|
||||
# --instructions--
|
||||
|
||||
@@ -37,15 +37,15 @@ dashedName: demographic-data-analyzer
|
||||
|
||||
你必须使用 Pandas 来回答以下问题:
|
||||
|
||||
- How many people of each race are represented in this dataset? This should be a Pandas series with race names as the index labels. (`race` column)
|
||||
- What is the average age of men?
|
||||
- What is the percentage of people who have a Bachelor's degree?
|
||||
- What percentage of people with advanced education (`Bachelors`, `Masters`, or `Doctorate`) make more than 50K?
|
||||
- What percentage of people without advanced education make more than 50K?
|
||||
- What is the minimum number of hours a person works per week?
|
||||
- What percentage of the people who work the minimum number of hours per week have a salary of more than 50K?
|
||||
- What country has the highest percentage of people that earn >50K and what is that percentage?
|
||||
- Identify the most popular occupation for those who earn >50K in India.
|
||||
- 这个数据集中每个种族有多少人? 这应该是一个以种族名称作为索引标签的 Pandas 系列。 (`race` 栏)
|
||||
- 男性的平均年龄是多少?
|
||||
- 拥有学士学位的人的百分比是多少?
|
||||
- 受过高等教育(`Bachelors`、`Masters` 或 `Doctorate`)且收入超过 50K 的人占多大比例?
|
||||
- 没有受过高等教育且收入超过 50K 的人的比例是多少?
|
||||
- 一个人每周最少工作多少小时?
|
||||
- 每周工作最少小时数的人中有多少人的工资超过 50K?
|
||||
- 哪个国家/地区的收入 >50K 的人口比例最高,该比例是多少?
|
||||
- 找出印度收入 >50K 的人最受欢迎的职业。
|
||||
|
||||
使用文件 `demographic_data_analyzer` 中的启动代码。 更新代码,以便将所有设置为“None”的变量设置为适当的计算或代码。 将所有小数四舍五入到最接近的十分之一。
|
||||
|
||||
|
||||
@@ -10,16 +10,16 @@ dashedName: mean-variance-standard-deviation-calculator
|
||||
|
||||
你将使用<a href="https://replit.com/github/freeCodeCamp/boilerplate-mean-variance-standard-deviation-calculator" target="_blank" rel="noopener noreferrer nofollow">我们在 Replit 的初始化项目</a>来完成这个项目。
|
||||
|
||||
- Start by importing the project on Replit.
|
||||
- Next, you will see a `.replit` window.
|
||||
- Select `Use run command` and click the `Done` button.
|
||||
- 首先在 Replit 中导入项目。
|
||||
- 接着,你将看到一个 `.replit` 窗口。
|
||||
- 选择 `Use run command` 并点击 `Done` 按钮。
|
||||
|
||||
|
||||
我们仍在开发 Python 课程的交互式教学部分。 目前,你可以在 YouTube 上通过 freeCodeCamp.org 上传的一些视频学习这个项目相关的知识。
|
||||
|
||||
- <a href="https://www.freecodecamp.org/news/python-for-everybody/" target="_blank" rel="noopener noreferrer nofollow">Python for Everybody Video Course</a>(14 hours)
|
||||
- <a href="https://www.freecodecamp.org/news/python-for-everybody/" target="_blank" rel="noopener noreferrer nofollow">给所有人的 Python 课程</a>(14 小时)
|
||||
|
||||
- <a href="https://www.freecodecamp.org/news/how-to-analyze-data-with-python-pandas/" target="_blank" rel="noopener noreferrer nofollow">How to Analyze Data with Python Pandas</a> (10 hours)
|
||||
- <a href="https://www.freecodecamp.org/news/how-to-analyze-data-with-python-pandas/" target="_blank" rel="noopener noreferrer nofollow">如何使用 Python Pandas 分析数据</a>(10 小时)
|
||||
|
||||
# --instructions--
|
||||
|
||||
|
||||
@@ -10,16 +10,16 @@ dashedName: medical-data-visualizer
|
||||
|
||||
你将使用<a href="https://replit.com/github/freeCodeCamp/boilerplate-medical-data-visualizer" target="_blank" rel="noopener noreferrer nofollow">我们在 Replit 的初始化项目</a>来完成这个项目。
|
||||
|
||||
- Start by importing the project on Replit.
|
||||
- Next, you will see a `.replit` window.
|
||||
- Select `Use run command` and click the `Done` button.
|
||||
- 首先在 Replit 中导入项目。
|
||||
- 接着,你将看到一个 `.replit` 窗口。
|
||||
- 选择 `Use run command` 并点击 `Done` 按钮。
|
||||
|
||||
|
||||
我们仍在开发 Python 课程的交互式教学部分。 目前,你可以在 YouTube 上通过 freeCodeCamp.org 上传的一些视频学习这个项目相关的知识。
|
||||
|
||||
- <a href="https://www.freecodecamp.org/news/python-for-everybody/" target="_blank" rel="noopener noreferrer nofollow">Python for Everybody Video Course</a>(14 hours)
|
||||
- <a href="https://www.freecodecamp.org/news/python-for-everybody/" target="_blank" rel="noopener noreferrer nofollow">给所有人的 Python 课程</a>(14 小时)
|
||||
|
||||
- <a href="https://www.freecodecamp.org/news/how-to-analyze-data-with-python-pandas/" target="_blank" rel="noopener noreferrer nofollow">How to Analyze Data with Python Pandas</a> (10 hours)
|
||||
- <a href="https://www.freecodecamp.org/news/how-to-analyze-data-with-python-pandas/" target="_blank" rel="noopener noreferrer nofollow">如何使用 Python Pandas 分析数据</a>(10 小时)
|
||||
|
||||
# --instructions--
|
||||
|
||||
@@ -52,16 +52,16 @@ dashedName: medical-data-visualizer
|
||||
|
||||
在 `medical_data_visualizer.py` 中使用数据完成以下任务:
|
||||
|
||||
- Add an `overweight` column to the data. To determine if a person is overweight, first calculate their BMI by dividing their weight in kilograms by the square of their height in meters. If that value is > 25 then the person is overweight. Use the value 0 for NOT overweight and the value 1 for overweight.
|
||||
- Normalize the data by making 0 always good and 1 always bad. If the value of `cholesterol` or `gluc` is 1, make the value 0. If the value is more than 1, make the value 1.
|
||||
- Convert the data into long format and create a chart that shows the value counts of the categorical features using seaborn's `catplot()`. The dataset should be split by 'Cardio' so there is one chart for each `cardio` value. The chart should look like `examples/Figure_1.png`.
|
||||
- Clean the data. Filter out the following patient segments that represent incorrect data:
|
||||
- diastolic pressure is higher than systolic (Keep the correct data with `(df['ap_lo'] <= df['ap_hi'])`)
|
||||
- height is less than the 2.5th percentile (Keep the correct data with `(df['height'] >= df['height'].quantile(0.025))`)
|
||||
- height is more than the 97.5th percentile
|
||||
- weight is less than the 2.5th percentile
|
||||
- weight is more than the 97.5th percentile
|
||||
- Create a correlation matrix using the dataset. Plot the correlation matrix using seaborn's `heatmap()`. Mask the upper triangle. The chart should look like `examples/Figure_2.png`.
|
||||
- 给数据添加一列 `overweight`。 要确定一个人是否超重,首先通过将他们的体重(公斤)除以他们的身高(米)的平方来计算他们的 BMI。 如果该值是 > 25,则此人超重。 使用值 0 表示不超重,使用值 1 表示超重。
|
||||
- 使用 0 表示好的和 1 表示坏,来规范化数据。 如果 `cholesterol` 或 `gluc` 的值为 1,则将值设为 0。 如果值大于 1,则将值设为 1。
|
||||
- 将数据转换为长格式并使用 seaborn 的 `catplot()` 创建一个显示分类特征值计数的图表。 数据集应按 “Cardio” 拆分,因此每个 `cardio` 值都有一个图表。 该图表应该看起来像 `examples/Figure_1.png`。
|
||||
- 清理数据。 过滤掉以下代表不正确数据的患者段:
|
||||
- 舒张压高于收缩压(使用 `(df['ap_lo'] <= df['ap_hi'])` 保留正确的数据)
|
||||
- 高度小于第 2.5 个百分位数(使用 `(df['height'] >= df['height'].quantile(0.025))` 保留正确的数据)
|
||||
- 身高超过第 97.5 个百分位
|
||||
- 体重小于第 2.5 个百分位
|
||||
- 体重超过第 97.5 个百分位
|
||||
- 使用数据集创建相关矩阵。 使用 seaborn 的 `heatmap()` 绘制相关矩阵。 遮罩上三角。 该图表应类似于 `examples/Figure_2.png`。
|
||||
|
||||
每当变量设置为 `None` 时,请确保将其设置为正确的代码。
|
||||
|
||||
|
||||
@@ -10,16 +10,16 @@ dashedName: page-view-time-series-visualizer
|
||||
|
||||
你将使用<a href="https://replit.com/github/freeCodeCamp/boilerplate-page-view-time-series-visualizer" target="_blank" rel="noopener noreferrer nofollow">我们在 Replit 的初始化项目</a>来完成这个项目。
|
||||
|
||||
- Start by importing the project on Replit.
|
||||
- Next, you will see a `.replit` window.
|
||||
- Select `Use run command` and click the `Done` button.
|
||||
- 首先在 Replit 中导入项目。
|
||||
- 接着,你将看到一个 `.replit` 窗口。
|
||||
- 选择 `Use run command` 并点击 `Done` 按钮。
|
||||
|
||||
|
||||
我们仍在开发 Python 课程的交互式教学部分。 目前,你可以在 freeCodeCamp.org 的 YouTube 频道中通过视频学习到这个项目相关的所有知识
|
||||
|
||||
- <a href="https://www.freecodecamp.org/news/python-for-everybody/" target="_blank" rel="noopener noreferrer nofollow">Python for Everybody Video Course</a>(14 hours)
|
||||
- <a href="https://www.freecodecamp.org/news/python-for-everybody/" target="_blank" rel="noopener noreferrer nofollow">给所有人的 Python 课程</a>(14 小时)
|
||||
|
||||
- <a href="https://www.freecodecamp.org/news/how-to-analyze-data-with-python-pandas/" target="_blank" rel="noopener noreferrer nofollow">How to Analyze Data with Python Pandas</a> (10 hours)
|
||||
- <a href="https://www.freecodecamp.org/news/how-to-analyze-data-with-python-pandas/" target="_blank" rel="noopener noreferrer nofollow">如何使用 Python Pandas 分析数据</a>(10 小时)
|
||||
|
||||
# --instructions--
|
||||
|
||||
@@ -27,11 +27,11 @@ dashedName: page-view-time-series-visualizer
|
||||
|
||||
使用数据完成以下任务:
|
||||
|
||||
- Use Pandas to import the data from "fcc-forum-pageviews.csv". Set the index to the `date` column.
|
||||
- Clean the data by filtering out days when the page views were in the top 2.5% of the dataset or bottom 2.5% of the dataset.
|
||||
- Create a `draw_line_plot` function that uses Matplotlib to draw a line chart similar to "examples/Figure_1.png". The title should be `Daily freeCodeCamp Forum Page Views 5/2016-12/2019`. The label on the x axis should be `Date` and the label on the y axis should be `Page Views`.
|
||||
- Create a `draw_bar_plot` function that draws a bar chart similar to "examples/Figure_2.png". It should show average daily page views for each month grouped by year. The legend should show month labels and have a title of `Months`. On the chart, the label on the x axis should be `Years` and the label on the y axis should be `Average Page Views`.
|
||||
- Create a `draw_box_plot` function that uses Seaborn to draw two adjacent box plots similar to "examples/Figure_3.png". These box plots should show how the values are distributed within a given year or month and how it compares over time. The title of the first chart should be `Year-wise Box Plot (Trend)` and the title of the second chart should be `Month-wise Box Plot (Seasonality)`. Make sure the month labels on bottom start at `Jan` and the x and y axis are labeled correctly. The boilerplate includes commands to prepare the data.
|
||||
- 使用 Pandas 从 “fcc-forum-pageviews.csv” 导入数据。 将索引设置为 `date` 列。
|
||||
- 通过过滤掉页面浏览量位于数据集前 2.5% 或数据集后 2.5% 的日期来清理数据。
|
||||
- 创建一个 `draw_line_plot` 函数,该函数使用 Matplotlib 绘制类似于 “examples/Figure_1.png” 的折线图。 标题应为 `Daily freeCodeCamp Forum Page Views 5/2016-12/2019`。 x 轴上的标签应为 `Date`,y 轴上的标签应为 `Page Views`。
|
||||
- 创建一个 `draw_bar_plot` 函数,用于绘制类似于 “examples/Figure_2.png” 的条形图。 它应该显示按年份分组的每个月的平均每日页面浏览量。 图例应显示月份标签并具有 `Months` 标题。 在图表上,x 轴上的标签应为 `Years`,y 轴上的标签应为 `Average Page Views`。
|
||||
- 创建一个 `draw_box_plot` 函数,该函数使用 Seaborn 绘制两个相邻的箱形图,类似于 “examples/Figure_3.png”。 这些箱线图应显示值在给定年份或月份内的分布情况以及随时间推移的比较情况。 第一个图表的标题应为 `Year-wise Box Plot (Trend)`,第二个图表的标题应为 `Month-wise Box Plot (Seasonality)`。 确保底部的月份标签从 `Jan` 开始,并且 x 和 y 轴标记正确。 样板文件包括准备数据的命令。
|
||||
|
||||
对于每个图表,请确保使用数据框的副本。 单元测试是在 `test_module.py` 下为你编写的。
|
||||
|
||||
|
||||
@@ -10,16 +10,16 @@ dashedName: sea-level-predictor
|
||||
|
||||
你将使用<a href="https://replit.com/github/freeCodeCamp/boilerplate-sea-level-predictor" target="_blank" rel="noopener noreferrer nofollow">我们在 Replit 的初始化项目</a>来完成这个项目。
|
||||
|
||||
- Start by importing the project on Replit.
|
||||
- Next, you will see a `.replit` window.
|
||||
- Select `Use run command` and click the `Done` button.
|
||||
- 首先在 Replit 中导入项目。
|
||||
- 接着,你将看到一个 `.replit` 窗口。
|
||||
- 选择 `Use run command` 并点击 `Done` 按钮。
|
||||
|
||||
|
||||
我们仍在开发 Python 课程的交互式教学部分。 目前,你可以在 YouTube 上通过 freeCodeCamp.org 上传的一些视频学习这个项目相关的知识。
|
||||
|
||||
- <a href="https://www.freecodecamp.org/news/python-for-everybody/" target="_blank" rel="noopener noreferrer nofollow">Python for Everybody Video Course</a>(14 hours)
|
||||
- <a href="https://www.freecodecamp.org/news/python-for-everybody/" target="_blank" rel="noopener noreferrer nofollow">给所有人的 Python 课程</a>(14 小时)
|
||||
|
||||
- <a href="https://www.freecodecamp.org/news/how-to-analyze-data-with-python-pandas/" target="_blank" rel="noopener noreferrer nofollow">How to Analyze Data with Python Pandas</a> (10 hours)
|
||||
- <a href="https://www.freecodecamp.org/news/how-to-analyze-data-with-python-pandas/" target="_blank" rel="noopener noreferrer nofollow">如何使用 Python Pandas 分析数据</a>(10 小时)
|
||||
|
||||
# --instructions--
|
||||
|
||||
@@ -27,11 +27,11 @@ dashedName: sea-level-predictor
|
||||
|
||||
使用数据完成以下任务:
|
||||
|
||||
- Use Pandas to import the data from `epa-sea-level.csv`.
|
||||
- Use matplotlib to create a scatter plot using the `Year` column as the x-axis and the `CSIRO Adjusted Sea Level` column as the y-axix.
|
||||
- Use the `linregress` function from `scipy.stats` to get the slope and y-intercept of the line of best fit. Plot the line of best fit over the top of the scatter plot. Make the line go through the year 2050 to predict the sea level rise in 2050.
|
||||
- Plot a new line of best fit just using the data from year 2000 through the most recent year in the dataset. Make the line also go through the year 2050 to predict the sea level rise in 2050 if the rate of rise continues as it has since the year 2000.
|
||||
- The x label should be `Year`, the y label should be `Sea Level (inches)`, and the title should be `Rise in Sea Level`.
|
||||
- 使用 Pandas 从 `epa-sea-level.csv` 导入数据。
|
||||
- 使用 matplotlib 创建散点图,将 `Year` 列作为 x 轴,将 `CSIRO Adjusted Sea Level` 列作为 y 轴。
|
||||
- 使用 `scipy.stats` 中的 `linregress` 函数来获得最佳拟合线的斜率和 y 截距。 在散点图的顶部绘制最佳拟合线。 使线穿过 2050 年以预测 2050 年的海平面上升。
|
||||
- 仅使用数据集中从 2000 年到最近一年的数据绘制一条新的最佳拟合线。 如果上升速度继续与 2000 年一样,则使该线也经过 2050 年以预测 2050 年的海平面上升。
|
||||
- x 标签应为 `Year`,y 标签应为 `Sea Level (inches)`,标题应为 `Rise in Sea Level`。
|
||||
|
||||
单元测试是在 `test_module.py` 下为你编写的。
|
||||
|
||||
|
||||
Reference in New Issue
Block a user