--- id: 5900f3f31000cf542c50ff06 title: 'Problem 135: Gleiche Unterschiede' challengeType: 1 forumTopicId: 301763 dashedName: problem-135-same-differences --- # --description-- Da die positiven ganzen Zahlen $x$, $y$ und $z$ aufeinanderfolgende Terme einer arithmetischen Progression sind, ist der kleinste Wert der positiven ganzen Zahl $n$, für den die Gleichung $x^2 - y^2 - z^2 = n$ genau zwei Lösungen hat, $n = 27$: $$34^2 − 27^2 − 20^2 = 12^2 − 9^2 − 6^2 = 27$$ Es stellt sich heraus, dass $n = 1155$ der kleinste Wert ist, der genau zehn Lösungen hat. Wie viele Werte von $n$, unter einer Million, haben genau zehn verschiedene Lösungen? # --hints-- `sameDifferences()` sollte `4989` zurückgeben. ```js assert.strictEqual(sameDifferences(), 4989); ``` # --seed-- ## --seed-contents-- ```js function sameDifferences() { return true; } sameDifferences(); ``` # --solutions-- ```js // solution required ```