mirror of
https://github.com/freeCodeCamp/freeCodeCamp.git
synced 2026-01-30 15:04:00 -05:00
1.4 KiB
1.4 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f46e1000cf542c50ff80 | Problem 257: Angular Bisectors | 1 | 301905 | problem-257-angular-bisectors |
--description--
Given is an integer sided triangle ABC with sides a ≤ b ≤ c (AB = c, BC = a and AC = b).
The angular bisectors of the triangle intersect the sides at points E, F and G (see picture below).
The segments EF, EG and FG partition the triangle ABC into four smaller triangles: AEG, BFE, CGF and EFG. It can be proven that for each of these four triangles the ratio \frac{\text{area}(ABC)}{\text{area}(\text{subtriangle})} is rational. However, there exist triangles for which some or all of these ratios are integral.
How many triangles ABC with perimeter ≤ 100\\,000\\,000 exist so that the ratio \frac{\text{area}(ABC)}{\text{area}(AEG)} is integral?
--hints--
angularBisectors() should return 139012411.
assert.strictEqual(angularBisectors(), 139012411);
--seed--
--seed-contents--
function angularBisectors() {
return true;
}
angularBisectors();
--solutions--
// solution required