mirror of
https://github.com/freeCodeCamp/freeCodeCamp.git
synced 2026-01-08 12:04:29 -05:00
122 lines
2.9 KiB
JSON
122 lines
2.9 KiB
JSON
{
|
|
"name": "Data Analysis with Python",
|
|
"isUpcomingChange": false,
|
|
"dashedName": "data-analysis-with-python-course",
|
|
"helpCategory": "Python",
|
|
"challengeOrder": [
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c14c",
|
|
"title": "Introduction to Data Analysis"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c14d",
|
|
"title": "Data Analysis Example A"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c14e",
|
|
"title": "Data Analysis Example B"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c14f",
|
|
"title": "How to use Jupyter Notebooks Intro"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c150",
|
|
"title": "Jupyter Notebooks Cells"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c151",
|
|
"title": "Jupyter Notebooks Importing and Exporting Data"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c152",
|
|
"title": "Numpy Introduction A"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c153",
|
|
"title": "Numpy Introduction B"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c154",
|
|
"title": "Numpy Arrays"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c155",
|
|
"title": "Numpy Operations"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c156",
|
|
"title": "Numpy Boolean Arrays"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c157",
|
|
"title": "Numpy Algebra and Size"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c158",
|
|
"title": "Pandas Introduction"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c159",
|
|
"title": "Pandas Indexing and Conditional Selection"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c15a",
|
|
"title": "Pandas DataFrames"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c15b",
|
|
"title": "Pandas Conditional Selection and Modifying DataFrames"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c15c",
|
|
"title": "Pandas Creating Columns"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c15d",
|
|
"title": "Data Cleaning Introduction"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c15e",
|
|
"title": "Data Cleaning with DataFrames"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c15f",
|
|
"title": "Data Cleaning Duplicates"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c160",
|
|
"title": "Data Cleaning and Visualizations"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c161",
|
|
"title": "Reading Data Introduction"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c162",
|
|
"title": "Reading Data CSV and TXT"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c163",
|
|
"title": "Reading Data from Databases"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c164",
|
|
"title": "Parsing HTML and Saving Data"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c165",
|
|
"title": "Python Introduction"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c166",
|
|
"title": "Python Functions and Collections"
|
|
},
|
|
{
|
|
"id": "5e9a093a74c4063ca6f7c167",
|
|
"title": "Python Iteration and Modules"
|
|
}
|
|
],
|
|
"blockLayout": "legacy-challenge-list"
|
|
}
|