mirror of
https://github.com/freeCodeCamp/freeCodeCamp.git
synced 2026-02-20 16:00:35 -05:00
1014 B
1014 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4b21000cf542c50ffc5 | Problem 326: Modulo Summations | 1 | 301983 | problem-326-modulo-summations |
--description--
Let a_n be a sequence recursively defined by: a_1 = 1, \displaystyle a_n = \left(\sum_{k = 1}^{n - 1} k \times a_k\right)\bmod n.
So the first 10 elements of a_n are: 1, 1, 0, 3, 0, 3, 5, 4, 1, 9.
Let f(N, M) represent the number of pairs (p, q) such that:
1 \le p \le q \le N \\; \text{and} \\; \left(\sum_{i = p}^q a_i\right)\bmod M = 0
It can be seen that f(10, 10) = 4 with the pairs (3,3), (5,5), (7,9) and (9,10).
You are also given that f({10}^4, {10}^3) = 97\\,158.
Find f({10}^{12}, {10}^6).
--hints--
moduloSummations() should return 1966666166408794400.
assert.strictEqual(moduloSummations(), 1966666166408794400);
--seed--
--seed-contents--
function moduloSummations() {
return true;
}
moduloSummations();
--solutions--
// solution required