mirror of
https://github.com/freeCodeCamp/freeCodeCamp.git
synced 2026-02-20 16:00:35 -05:00
965 B
965 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4461000cf542c50ff58 | Problem 217: Ausgeglichene Zahlen | 1 | 301859 | problem-217-balanced-numbers |
--description--
A positive integer with k (decimal) digits is called balanced if its first ⌈\frac{k}{2}⌉ digits sum to the same value as its last ⌈\frac{k}{2}⌉ digits, where ⌈x⌉, pronounced ceiling of x, is the smallest integer ≥ x, thus ⌈π⌉ = 4 and ⌈5⌉ = 5.
So, for example, all palindromes are balanced, as is 13722.
Let T(n) be the sum of all balanced numbers less than 10^n.
Thus: T(1) = 45, T(2) = 540 and T(5) = 334\\,795\\,890.
Finde T(47)\\,mod\\,3^{15}
--hints--
balancedNumbers() sollte 6273134 zurückgeben.
assert.strictEqual(balancedNumbers(), 6273134);
--seed--
--seed-contents--
function balancedNumbers() {
return true;
}
balancedNumbers();
--solutions--
// solution required