mirror of
https://github.com/freeCodeCamp/freeCodeCamp.git
synced 2025-12-19 18:18:27 -05:00
2.2 KiB
2.2 KiB
id, title, challengeType, dashedName
| id | title | challengeType | dashedName |
|---|---|---|---|
| 6939b873185d8e00d453563f | Challenge 160: Knight Moves | 28 | challenge-160 |
--description--
Given the position of a knight on a chessboard, return the number of valid squares the knight can move to.
A standard chessboard is 8x8, with columns labeled A through H (left to right) and rows labeled 1 through 8 (bottom to top). It looks like this:
| A8 | B8 | C8 | D8 | E8 | F8 | G8 | H8 |
|---|---|---|---|---|---|---|---|
| A7 | B7 | C7 | D7 | E7 | F7 | G7 | H7 |
| A6 | B6 | C6 | D6 | E6 | F6 | G6 | H6 |
| A5 | B5 | C5 | D5 | E5 | F5 | G5 | H5 |
| A4 | B4 | C4 | D4 | E4 | F4 | G4 | H4 |
| A3 | B3 | C3 | D3 | E3 | F3 | G3 | H3 |
| A2 | B2 | C2 | D2 | E2 | F2 | G2 | H2 |
| A1 | B1 | C1 | D1 | E1 | F1 | G1 | H1 |
A knight moves in an "L" shape: two squares in one direction (horizontal or vertical), and one square in the perpendicular direction.
This means a knight can move to up to eight possible positions, but fewer when near the edges of the board. For example, if a knight was at A1, it could only move to B3 or C2.
--hints--
knightMoves("A1") should return 2.
assert.equal(knightMoves("A1"), 2);
knightMoves("D4") should return 8.
assert.equal(knightMoves("D4"), 8);
knightMoves("G6") should return 6.
assert.equal(knightMoves("G6"), 6);
knightMoves("B8") should return 3.
assert.equal(knightMoves("B8"), 3);
knightMoves("H3") should return 4.
assert.equal(knightMoves("H3"), 4);
--seed--
--seed-contents--
function knightMoves(position) {
return position;
}
--solutions--
function knightMoves(position) {
const col = position[0].charCodeAt(0) - 65;
const row = parseInt(position[1]) - 1;
const moves = [
[2, 1], [2, -1],
[-2, 1], [-2, -1],
[1, 2], [1, -2],
[-1, 2], [-1, -2]
];
let valid = 0;
for (const [dx, dy] of moves) {
const newCol = col + dx;
const newRow = row + dy;
if (newCol >= 0 && newCol < 8 && newRow >= 0 && newRow < 8) {
valid++;
}
}
return valid;
}