# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Functional tests running the TPCH and TPCDS workload twice to test tuple cache. from __future__ import absolute_import, division, print_function import pytest from tests.common.environ import IS_TUPLE_CACHE_CORRECT_CHECK from tests.common.impala_test_suite import ImpalaTestSuite from tests.common.skip import SkipIf from tests.common.test_dimensions import create_single_exec_option_dimension from tests.util.test_file_parser import load_tpc_queries_name_sorted MT_DOP_VALUES = [0, 4] def run_tuple_cache_test(self, vector, query, mtdop): vector.get_value('exec_option')['enable_tuple_cache'] = True # Use a long runtime filter wait time (1 minute) to ensure filters arrive before # generating the tuple cache for correctness check. if IS_TUPLE_CACHE_CORRECT_CHECK: vector.get_value('exec_option')['runtime_filter_wait_time_ms'] = 600000 vector.get_value('exec_option')['enable_tuple_cache_verification'] = True vector.get_value('exec_option')['tuple_cache_placement_policy'] = 'all_eligible' vector.get_value('exec_option')['mt_dop'] = mtdop # Run twice to test write and read the tuple cache. self.run_test_case(query, vector) self.run_test_case(query, vector) @SkipIf.not_tuple_cache class TestTupleCacheTpchQuery(ImpalaTestSuite): @classmethod def get_workload(self): return 'tpch' @classmethod def add_test_dimensions(cls): super(TestTupleCacheTpchQuery, cls).add_test_dimensions() if cls.exploration_strategy() != 'exhaustive': cls.ImpalaTestMatrix.add_dimension(create_single_exec_option_dimension()) cls.ImpalaTestMatrix.add_constraint(lambda v: v.get_value('table_format').file_format == 'parquet' and v.get_value('table_format').compression_codec == 'none') @pytest.mark.parametrize("query", load_tpc_queries_name_sorted('tpch')) @pytest.mark.parametrize("mtdop", MT_DOP_VALUES) def test_tpch(self, vector, query, mtdop): run_tuple_cache_test(self, vector, query, mtdop) @SkipIf.not_tuple_cache class TestTupleCacheTpcdsQuery(ImpalaTestSuite): @classmethod def get_workload(self): return 'tpcds' @classmethod def add_test_dimensions(cls): super(TestTupleCacheTpcdsQuery, cls).add_test_dimensions() if cls.exploration_strategy() != 'exhaustive': cls.ImpalaTestMatrix.add_dimension(create_single_exec_option_dimension()) cls.ImpalaTestMatrix.add_constraint(lambda v: v.get_value('table_format').file_format == 'parquet' and v.get_value('table_format').compression_codec == 'none') @pytest.mark.parametrize("query", load_tpc_queries_name_sorted('tpcds')) @pytest.mark.parametrize("mtdop", MT_DOP_VALUES) def test_tpcds(self, vector, query, mtdop): run_tuple_cache_test(self, vector, query, mtdop)