#!/usr/bin/env impala-python3 # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # This class can be used to drive a concurrent workload against a local minicluster from __future__ import absolute_import, division, print_function from builtins import range import argparse import logging # Needed to work around datetime threading bug: # https://stackoverflow.com/questions/32245560/module-object-has-no-attribute-strptime-with-several-threads-python import _strptime # noqa: F401 import sys import time from queue import Queue from threading import current_thread, Event, Thread from tests.common.impala_cluster import ImpalaCluster class ConcurrentWorkload(object): """This class can be used to drive concurrent streams of queries against a cluster. It is useful when trying to carefully control the number of queries running on a cluster concurrently. The queries typically involve some sleep statement to allow for larger numbers of concurrently running queries. This class should not be used for performance benchmarks, e.g. to evaluate query throughput. Users of this class need to make sure to call start() and stop(). Optionally, the class supports printing the current throughput rate. The class also requires that the first node in the cluster is a dedicated coordinator and it must already be running when calling start(). """ def __init__(self, query, num_streams): self.query = query self.num_streams = num_streams self.stop_ev = Event() self.output_q = Queue() self.threads = [] self.query_rate = 0 self.query_rate_thread = Thread(target=self.compute_query_rate, args=(self.output_q, self.stop_ev)) def execute(self, query): """Executes a query on the coordinator of the local minicluster.""" cluster = ImpalaCluster.get_e2e_test_cluster() if len(cluster.impalads) == 0: raise Exception("Coordinator not running") client = cluster.get_first_impalad().service.create_hs2_client() return client.execute(query) def loop_query(self, query, output_q, stop_ev): """Executes 'query' in a loop while 'stop_ev' is not set and inserts the result into 'output_q'.""" while not stop_ev.is_set(): try: output_q.put(self.execute(query)) except Exception: if not stop_ev.is_set(): stop_ev.set() logging.exception("Caught error, stopping") logging.info("%s exiting" % current_thread().name) def compute_query_rate(self, queue_obj, stop_ev): """Computes the query throughput rate in queries per second averaged over the last 5 seconds. This method only returns when 'stop_ev' is set by the caller.""" AVG_WINDOW_S = 5 times = [] while not stop_ev.is_set(): # Don't block to check for stop_ev if queue_obj.empty(): time.sleep(0.1) continue queue_obj.get() now = time.time() times.append(now) # Keep only timestamps within the averaging window start = now - AVG_WINDOW_S times = [t for t in times if t >= start] self.query_rate = float(len(times)) / AVG_WINDOW_S def get_query_rate(self): """Returns the query rate as computed by compute_query_rate. This is thread-safe because assignments in Python are atomic.""" return self.query_rate def start(self): """Starts worker threads to execute queries.""" # Start workers for i in range(self.num_streams): t = Thread(target=self.loop_query, args=(self.query, self.output_q, self.stop_ev)) self.threads.append(t) t.start() self.query_rate_thread.start() def print_query_rate(self): """Prints the current query throughput until user presses ctrl-c.""" try: self._print_query_rate(self.output_q, self.stop_ev) except KeyboardInterrupt: self.stop() assert self.stop_ev.is_set(), "Stop event expected to be set but it isn't" def _print_query_rate(self, queue_obj, stop_ev): """Prints the query throughput rate until 'stop_ev' is set by the caller.""" PERIOD_S = 1 print_time = time.time() while not stop_ev.is_set(): sys.stdout.write("\rQuery rate %.2f/s" % self.query_rate) sys.stdout.flush() print_time += PERIOD_S time.sleep(print_time - time.time()) sys.stdout.write("\n") def stop(self): """Stops all worker threads and waits for them to finish.""" if self.stop_ev is None or self.stop_ev.is_set(): return self.stop_ev.set() # Wait for all workers to exit for t in self.threads: logging.info("Waiting for %s" % t.name) t.join() self.threads = [] if self.query_rate_thread: self.query_rate_thread.join() self.query_rate = None def main(): parser = argparse.ArgumentParser() parser.add_argument("-q", "--query", help="Run this query", default="select * from functional_parquet.alltypestiny " "where month < 3 and id + random() < sleep(500);") parser.add_argument("-n", "--num_streams", help="Run this many in parallel", type=int, default=5) args = parser.parse_args() # Restrict logging so it doesn't interfere with print_query_rate() logging.basicConfig(level=logging.INFO) # Also restrict other modules' debug output logging.getLogger("impala_cluster").setLevel(logging.INFO) logging.getLogger("impala_connection").setLevel(logging.WARNING) logging.getLogger("impala.hiveserver2").setLevel(logging.CRITICAL) s = ConcurrentWorkload(args.query, args.num_streams) s.start() s.print_query_rate() if __name__ == "__main__": main()