# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import absolute_import, division, print_function from builtins import range import logging import pytest from time import sleep, time from tests.util.auto_scaler import AutoScaler from tests.util.concurrent_workload import ConcurrentWorkload from tests.common.custom_cluster_test_suite import CustomClusterTestSuite LOG = logging.getLogger("test_auto_scaling") TOTAL_BACKENDS_METRIC_NAME = "cluster-membership.backends.total" class TestAutoScaling(CustomClusterTestSuite): @classmethod def setup_class(cls): if cls.exploration_strategy() != 'exhaustive': pytest.skip('runs only in exhaustive') super(TestAutoScaling, cls).setup_class() """This class contains tests that exercise the logic related to scaling clusters up and down by adding and removing groups of executors.""" INITIAL_STARTUP_TIME_S = 10 STATE_CHANGE_TIMEOUT_S = 60 # This query will scan two partitions (month = 1, 2) and thus will have 1 fragment # instance per executor on groups of size 2. Each partition has 2 rows, so it performs # two comparisons and should take around 2 second to complete. QUERY = """select * from functional_parquet.alltypestiny where month < 3 and id + random() < sleep(1000)""" def _get_total_admitted_queries(self): admitted_queries = self.impalad_test_service.get_total_admitted_queries( "default-pool") LOG.info("Current total admitted queries: %s", admitted_queries) return admitted_queries def _get_num_backends(self): metric_val = self.impalad_test_service.get_metric_value(TOTAL_BACKENDS_METRIC_NAME) LOG.info("Getting metric %s : %s", TOTAL_BACKENDS_METRIC_NAME, metric_val) return metric_val def _get_num_running_queries(self): running_queries = self.impalad_test_service.get_num_running_queries("default-pool") LOG.info("Current running queries: %s", running_queries) return running_queries def test_single_workload(self): """This test exercises the auto-scaling logic in the admission controller. It spins up a base cluster (coordinator, catalog, statestore), runs a workload to initiate a scaling up event as the queries start queuing, then stops the workload and observes that the cluster gets shutdown.""" GROUP_SIZE = 2 EXECUTOR_SLOTS = 3 auto_scaler = AutoScaler(executor_slots=EXECUTOR_SLOTS, group_size=GROUP_SIZE) workload = None try: auto_scaler.start() sleep(self.INITIAL_STARTUP_TIME_S) workload = ConcurrentWorkload(self.QUERY, num_streams=5) LOG.info("Starting workload") workload.start() # Wait for workers to spin up cluster_size = GROUP_SIZE + 1 # +1 to include coordinator. assert any(self._get_num_backends() >= cluster_size or sleep(1) for _ in range(self.STATE_CHANGE_TIMEOUT_S)), \ "Number of backends did not increase within %s s" % self.STATE_CHANGE_TIMEOUT_S assert self.impalad_test_service.get_metric_value( "cluster-membership.executor-groups.total-healthy") >= 1 # Wait until we admitted at least 10 queries assert any(self._get_total_admitted_queries() >= 10 or sleep(1) for _ in range(self.STATE_CHANGE_TIMEOUT_S)), \ "Did not admit enough queries within %s s" % self.STATE_CHANGE_TIMEOUT_S # Wait for second executor group to start cluster_size = (2 * GROUP_SIZE) + 1 assert any(self._get_num_backends() >= cluster_size or sleep(1) for _ in range(self.STATE_CHANGE_TIMEOUT_S)), \ "Number of backends did not reach %s within %s s" % ( cluster_size, self.STATE_CHANGE_TIMEOUT_S) assert self.impalad_test_service.get_metric_value( "cluster-membership.executor-groups.total-healthy") >= 2 LOG.info("Stopping workload") workload.stop() # Wait for workers to spin down self.impalad_test_service.wait_for_metric_value( TOTAL_BACKENDS_METRIC_NAME, 1, timeout=self.STATE_CHANGE_TIMEOUT_S, interval=1) assert self.impalad_test_service.get_metric_value( "cluster-membership.executor-groups.total") == 0 finally: if workload: workload.stop() LOG.info("Stopping auto scaler") auto_scaler.stop() def test_single_group_maxed_out(self): """This test starts an auto scaler and limits it to a single executor group. It then makes sure that the query throughput does not exceed the expected limit.""" GROUP_SIZE = 2 EXECUTOR_SLOTS = 3 auto_scaler = AutoScaler(executor_slots=EXECUTOR_SLOTS, group_size=GROUP_SIZE, max_groups=1, coordinator_slots=EXECUTOR_SLOTS) workload = None try: auto_scaler.start() sleep(self.INITIAL_STARTUP_TIME_S) workload = ConcurrentWorkload(self.QUERY, num_streams=5) LOG.info("Starting workload") workload.start() # Wait for workers to spin up cluster_size = GROUP_SIZE + 1 # +1 to include coordinator. self.impalad_test_service.wait_for_metric_value( TOTAL_BACKENDS_METRIC_NAME, cluster_size, timeout=self.STATE_CHANGE_TIMEOUT_S, interval=1) # Wait until we admitted at least 10 queries assert any(self._get_total_admitted_queries() >= 10 or sleep(1) for _ in range(self.STATE_CHANGE_TIMEOUT_S)), \ "Did not admit enough queries within %s s" % self.STATE_CHANGE_TIMEOUT_S # Sample the number of running queries for while SAMPLE_NUM_RUNNING_S = 30 end_time = time() + SAMPLE_NUM_RUNNING_S num_running = [] while time() < end_time: num_running.append(self._get_num_running_queries()) sleep(1) # Must reach EXECUTOR_SLOTS but not exceed it assert max(num_running) == EXECUTOR_SLOTS, \ "Unexpected number of running queries: %s" % num_running # Check that only a single group started assert self.impalad_test_service.get_metric_value( "cluster-membership.executor-groups.total-healthy") == 1 LOG.info("Stopping workload") workload.stop() # Wait for workers to spin down self.impalad_test_service.wait_for_metric_value( TOTAL_BACKENDS_METRIC_NAME, 1, timeout=self.STATE_CHANGE_TIMEOUT_S, interval=1) assert self.impalad_test_service.get_metric_value( "cluster-membership.executor-groups.total") == 0 finally: if workload: workload.stop() LOG.info("Stopping auto scaler") auto_scaler.stop() def test_sequential_startup(self): """This test starts an executor group sequentially and observes that no queries are admitted until the group has been fully started.""" # Larger groups size so it takes a while to start up GROUP_SIZE = 4 EXECUTOR_SLOTS = 3 auto_scaler = AutoScaler(executor_slots=EXECUTOR_SLOTS, group_size=GROUP_SIZE, start_batch_size=1, max_groups=1) workload = None try: auto_scaler.start() sleep(self.INITIAL_STARTUP_TIME_S) workload = ConcurrentWorkload(self.QUERY, num_streams=5) LOG.info("Starting workload") workload.start() # Wait for first executor to start up self.impalad_test_service.wait_for_metric_value( "cluster-membership.executor-groups.total", 1, timeout=self.STATE_CHANGE_TIMEOUT_S, interval=1) # Wait for remaining executors to start up and make sure that no queries are # admitted during startup end_time = time() + self.STATE_CHANGE_TIMEOUT_S startup_complete = False cluster_size = GROUP_SIZE + 1 # +1 to include coordinator. while time() < end_time: num_admitted = self._get_total_admitted_queries() num_backends = self._get_num_backends() if num_backends < cluster_size: assert num_admitted == 0, "%s/%s backends started but %s queries have " \ "already been admitted." % (num_backends, cluster_size, num_admitted) if num_admitted > 0: assert num_backends == cluster_size startup_complete = True break sleep(1) assert startup_complete, "Did not start up in %s s" % self.STATE_CHANGE_TIMEOUT_S LOG.info("Stopping workload") workload.stop() # Wait for workers to spin down self.impalad_test_service.wait_for_metric_value( TOTAL_BACKENDS_METRIC_NAME, 1, timeout=self.STATE_CHANGE_TIMEOUT_S, interval=1) assert self.impalad_test_service.get_metric_value( "cluster-membership.executor-groups.total") == 0 finally: if workload: workload.stop() LOG.info("Stopping auto scaler") auto_scaler.stop()