EXPLAIN Statement EXPLAIN

EXPLAIN statement Returns the execution plan for a statement, showing the low-level mechanisms that Impala will use to read the data, divide the work among nodes in the cluster, and transmit intermediate and final results across the network. Use explain followed by a complete SELECT query. For example:

EXPLAIN { select_query | ctas_stmt | insert_stmt }

The select_query is a SELECT statement, optionally prefixed by a WITH clause. See for details.

The insert_stmt is an INSERT statement that inserts into or overwrites an existing table. It can use either the INSERT ... SELECT or INSERT ... VALUES syntax. See for details.

The ctas_stmt is a CREATE TABLE statement using the AS SELECT clause, typically abbreviated as a CTAS operation. See for details.

You can interpret the output to judge whether the query is performing efficiently, and adjust the query and/or the schema if not. For example, you might change the tests in the WHERE clause, add hints to make join operations more efficient, introduce subqueries, change the order of tables in a join, add or change partitioning for a table, collect column statistics and/or table statistics in Hive, or any other performance tuning steps.

The EXPLAIN output reminds you if table or column statistics are missing from any table involved in the query. These statistics are important for optimizing queries involving large tables or multi-table joins. See for how to gather statistics, and for how to use this information for query tuning.

If you come from a traditional database background and are not familiar with data warehousing, keep in mind that Impala is optimized for full table scans across very large tables. The structure and distribution of this data is typically not suitable for the kind of indexing and single-row lookups that are common in OLTP environments. Seeing a query scan entirely through a large table is common, not necessarily an indication of an inefficient query. Of course, if you can reduce the volume of scanned data by orders of magnitude, for example by using a query that affects only certain partitions within a partitioned table, then you might be able to optimize a query so that it executes in seconds rather than minutes.

For more information and examples to help you interpret EXPLAIN output, see .

Extended EXPLAIN output:

For performance tuning of complex queries, and capacity planning (such as using the admission control and resource management features), you can enable more detailed and informative output for the EXPLAIN statement. In the impala-shell interpreter, issue the command SET EXPLAIN_LEVEL=level, where level is an integer from 0 to 3 or corresponding mnemonic values minimal, standard, extended, or verbose.

When extended EXPLAIN output is enabled, EXPLAIN statements print information about estimated memory requirements, minimum number of virtual cores, and so on.

See for details and examples.

This example shows how the standard EXPLAIN output moves from the lowest (physical) level to the higher (logical) levels. The query begins by scanning a certain amount of data; each node performs an aggregation operation (evaluating COUNT(*)) on some subset of data that is local to that node; the intermediate results are transmitted back to the coordinator node (labelled here as the EXCHANGE node); lastly, the intermediate results are summed to display the final result.

[impalad-host:21000] > explain select count(*) from customer_address; +----------------------------------------------------------+ | Explain String | +----------------------------------------------------------+ | Estimated Per-Host Requirements: Memory=42.00MB VCores=1 | | | | 03:AGGREGATE [MERGE FINALIZE] | | | output: sum(count(*)) | | | | | 02:EXCHANGE [PARTITION=UNPARTITIONED] | | | | | 01:AGGREGATE | | | output: count(*) | | | | | 00:SCAN HDFS [default.customer_address] | | partitions=1/1 size=5.25MB | +----------------------------------------------------------+

These examples show how the extended EXPLAIN output becomes more accurate and informative as statistics are gathered by the COMPUTE STATS statement. Initially, much of the information about data size and distribution is marked unavailable. Impala can determine the raw data size, but not the number of rows or number of distinct values for each column without additional analysis. The COMPUTE STATS statement performs this analysis, so a subsequent EXPLAIN statement has additional information to use in deciding how to optimize the distributed query.

[localhost:21000] > set explain_level=extended; EXPLAIN_LEVEL set to extended [localhost:21000] > explain select x from t1; [localhost:21000] > explain select x from t1; +----------------------------------------------------------+ | Explain String | +----------------------------------------------------------+ | Estimated Per-Host Requirements: Memory=32.00MB VCores=1 | | | | 01:EXCHANGE [PARTITION=UNPARTITIONED] | | | hosts=1 per-host-mem=unavailable | | | tuple-ids=0 row-size=4B cardinality=unavailable | | | | | 00:SCAN HDFS [default.t2, PARTITION=RANDOM] | | partitions=1/1 size=36B | | table stats: unavailable | | column stats: unavailable | | hosts=1 per-host-mem=32.00MB | | tuple-ids=0 row-size=4B cardinality=unavailable | +----------------------------------------------------------+ [localhost:21000] > compute stats t1; +-----------------------------------------+ | summary | +-----------------------------------------+ | Updated 1 partition(s) and 1 column(s). | +-----------------------------------------+ [localhost:21000] > explain select x from t1; +----------------------------------------------------------+ | Explain String | +----------------------------------------------------------+ | Estimated Per-Host Requirements: Memory=64.00MB VCores=1 | | | | 01:EXCHANGE [PARTITION=UNPARTITIONED] | | | hosts=1 per-host-mem=unavailable | | | tuple-ids=0 row-size=4B cardinality=0 | | | | | 00:SCAN HDFS [default.t1, PARTITION=RANDOM] | | partitions=1/1 size=36B | | table stats: 0 rows total | | column stats: all | | hosts=1 per-host-mem=64.00MB | | tuple-ids=0 row-size=4B cardinality=0 | +----------------------------------------------------------+

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute permissions for all applicable directories in all source tables for the query that is being explained. (A SELECT operation could read files from multiple different HDFS directories if the source table is partitioned.)

The EXPLAIN statement displays equivalent plan information for queries against Kudu tables as for queries against HDFS-based tables.

To see which predicates Impala can push down to Kudu for efficient evaluation, without transmitting unnecessary rows back to Impala, look for the kudu predicates item in the scan phase of the query. The label kudu predicates indicates a condition that can be evaluated efficiently on the Kudu side. The label predicates in a SCAN KUDU node indicates a condition that is evaluated by Impala. For example, in a table with primary key column X and non-primary key column Y, you can see that some operators in the WHERE clause are evaluated immediately by Kudu and others are evaluated later by Impala:

EXPLAIN SELECT x,y from kudu_table WHERE x = 1 AND y NOT IN (2,3) AND z = 1 AND a IS NOT NULL AND b > 0 AND length(s) > 5; +---------------- | Explain String +---------------- ... | 00:SCAN KUDU [kudu_table] | predicates: y NOT IN (2, 3), length(s) > 5 | kudu predicates: a IS NOT NULL, b > 0, x = 1, z = 1

Only binary predicates, IS NULL and IS NOT NULL (in and higher), and IN predicates containing literal values that exactly match the types in the Kudu table, and do not require any casting, can be pushed to Kudu.

, , ,