# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # Tests for Hive-IMPALA parquet compression codec interoperability import pytest from tests.common.custom_cluster_test_suite import CustomClusterTestSuite from tests.util.event_processor_utils import EventProcessorUtils from tests.common.environ import HIVE_MAJOR_VERSION from tests.common.skip import SkipIfS3, SkipIfGCS, SkipIfCOS from tests.common.test_dimensions import create_exec_option_dimension from tests.common.test_result_verifier import verify_query_result_is_equal from tests.util.filesystem_utils import get_fs_path PARQUET_CODECS = ['none', 'snappy', 'gzip', 'zstd', 'zstd:7', 'lz4'] class TestParquetInterop(CustomClusterTestSuite): @classmethod def get_workload(self): return 'functional-query' @classmethod def setup_class(cls): if cls.exploration_strategy() != 'exhaustive': pytest.skip('runs only in exhaustive') super(TestParquetInterop, cls).setup_class() @classmethod def add_test_dimensions(cls): super(CustomClusterTestSuite, cls).add_test_dimensions() # Fix the exec_option vector to have a single value. cls.ImpalaTestMatrix.add_dimension(create_exec_option_dimension( cluster_sizes=[0], disable_codegen_options=[False], batch_sizes=[0], sync_ddl=[1])) cls.ImpalaTestMatrix.add_constraint( lambda v: v.get_value('table_format').file_format == 'parquet') @SkipIfS3.hive @SkipIfGCS.hive @SkipIfCOS.hive @pytest.mark.execute_serially @CustomClusterTestSuite.with_args("-convert_legacy_hive_parquet_utc_timestamps=true " "-hdfs_zone_info_zip=%s" % get_fs_path("/test-warehouse/tzdb/2017c.zip")) def test_hive_impala_interop(self, vector, unique_database, cluster_properties): # Setup source table. source_table = "{0}.{1}".format(unique_database, "t1_source") self.execute_query_expect_success(self.client, "create table {0} as select * from functional_parquet.alltypes" .format(source_table)) self.execute_query_expect_success(self.client, "insert into {0}(id) values (7777), (8888), (9999), (11111), (22222), (33333)" .format(source_table)) # Loop through the compression codecs and run interop tests. for codec in PARQUET_CODECS: # Write data in Impala. vector.get_value('exec_option')['compression_codec'] = codec impala_table = "{0}.{1}".format(unique_database, "t1_impala") self.execute_query_expect_success(self.client, "drop table if exists {0}".format(impala_table)) self.execute_query_expect_success(self.client, "create table {0} stored as parquet as select * from {1}" .format(impala_table, source_table), vector.get_value('exec_option')) # Read data from Impala and write in Hive if (codec == 'none'): codec = 'uncompressed' elif (codec == 'zstd:7'): codec = 'zstd' hive_table = "{0}.{1}".format(unique_database, "t1_hive") self.run_stmt_in_hive("drop table if exists {0}".format(hive_table)) # For Hive 3+, workaround for HIVE-22371 (CTAS puts files in the wrong place) by # explicitly creating an external table so that files are in the external warehouse # directory. Use external.table.purge=true so that it is equivalent to a Hive 2 # managed table. Hive 2 stays the same. external = "" tblproperties = "" if HIVE_MAJOR_VERSION >= 3: external = "external" tblproperties = "TBLPROPERTIES('external.table.purge'='TRUE')" self.run_stmt_in_hive("set parquet.compression={0};\ create {1} table {2} stored as parquet {3} as select * from {4}" .format(codec, external, hive_table, tblproperties, impala_table)) # Make sure Impala's metadata is in sync. if cluster_properties.is_event_polling_enabled(): assert EventProcessorUtils.get_event_processor_status() == "ACTIVE" EventProcessorUtils.wait_for_event_processing(self) self.confirm_table_exists(unique_database, "t1_hive") else: self.client.execute("invalidate metadata {0}".format(hive_table)) # Read Hive data in Impala and verify results. base_result = self.execute_query_expect_success(self.client, "select * from {0} order by id".format(source_table)) test_result = self.execute_query_expect_success(self.client, "select * from {0} order by id".format(hive_table)) verify_query_result_is_equal(test_result.data, base_result.data)