#!/usr/bin/env python # Copyright (c) 2012 Cloudera, Inc. All rights reserved. # Validates all aggregate functions across all datatypes # import logging import pytest from tests.common.test_vector import * from tests.common.impala_test_suite import * agg_functions = ['sum', 'count', 'min', 'max', 'avg'] data_types = ['int', 'bool', 'double', 'bigint', 'tinyint', 'smallint', 'float', 'timestamp'] result_lut = { # TODO: Add verification for other types 'sum-tinyint': 45000, 'avg-tinyint': 5, 'count-tinyint': 9000, 'min-tinyint': 1, 'max-tinyint': 9, 'sum-smallint': 495000, 'avg-smallint': 50, 'count-smallint': 9900, 'min-smallint': 1, 'max-smallint': 99, 'sum-int': 4995000, 'avg-int': 500, 'count-int': 9990, 'min-int': 1, 'max-int': 999, 'sum-bigint': 49950000, 'avg-bigint': 5000, 'count-bigint': 9990, 'min-bigint': 10, 'max-bigint': 9990, } class TestAggregation(ImpalaTestSuite): @classmethod def get_dataset(self): return 'functional-query' @classmethod def add_test_dimensions(cls): super(TestAggregation, cls).add_test_dimensions() # Add two more dimensions cls.TestMatrix.add_dimension(TestDimension('agg_func', *agg_functions)) cls.TestMatrix.add_dimension(TestDimension('data_type', *data_types)) # Only execute against text format, restrict bool types to min/max cls.TestMatrix.add_constraint(\ lambda v: v.get_value('table_format').file_format == 'text') cls.TestMatrix.add_constraint(lambda v: v.get_value('exec_option')['batch_size'] == 0) cls.TestMatrix.add_constraint(lambda v: v.get_value('agg_func') in ['min', 'max'] if\ v.get_value('data_type') == 'bool' else True) def test_aggregation(self, vector): data_type, agg_func = (vector.get_value('data_type'), vector.get_value('agg_func')) query = 'select %s(%s_col) from alltypesagg' % (agg_func, data_type) result = self.execute_scalar(query, vector.get_value('exec_option')) if 'int' in data_type: assert result_lut['%s-%s' % (agg_func, data_type)] == int(result) # AVG if vector.get_value('data_type') == 'timestamp' and\ vector.get_value('agg_func') == 'avg': return query = 'select %s(DISTINCT(%s_col)) from alltypesagg' % (agg_func, data_type) result = self.execute_scalar(query, vector.get_value('exec_option'))