mirror of
https://github.com/apache/impala.git
synced 2025-12-19 18:12:08 -05:00
Replaced allpairspy with a homemade pair finder that seems to find a somewhat less optimal (larger) covering vector set but works reliably with filters. For details see tests/common/test_vector.py Also fixes a few test issues uncovered. Some fixes are copied from https://gerrit.cloudera.org/#/c/23319/ Added the possibility of shuffling vectors to get a different test set (env var IMPALA_TEST_VECTOR_SEED). By default the algorithm is deterministic so the test set won't change between runs (similarly to allpairspy). Added a new constraint to test only a single compression per file format in some tests to reduce the number of new vectors. EE + custom_cluster test count in exhaustive runs: before patch: ~11000 after patch: ~16000 without compression constraint: ~17000 Change-Id: I419c24659a08d8d6592fadbbd5b764ff73cbba3e Reviewed-on: http://gerrit.cloudera.org:8080/23342 Reviewed-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com> Tested-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
347 lines
14 KiB
Python
347 lines
14 KiB
Python
# Licensed to the Apache Software Foundation (ASF) under one
|
|
# or more contributor license agreements. See the NOTICE file
|
|
# distributed with this work for additional information
|
|
# regarding copyright ownership. The ASF licenses this file
|
|
# to you under the Apache License, Version 2.0 (the
|
|
# "License"); you may not use this file except in compliance
|
|
# with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
# A TextMatrix is used to generate a set of ImpalaTestVectors. The vectors that are
|
|
# generated are based on one or more ImpalaTestDimensions inputs. These lists define
|
|
# the set of values that are interesting to a test. For example, for file_format
|
|
# these might be 'seq', 'text', etc
|
|
#
|
|
# The ImpalaTestMatrix is then used to generate a set of ImpalaTestVectors. Each
|
|
# ImpalaTestVector contains a single value from each of the input ImpalaTestDimensions.
|
|
# An example:
|
|
#
|
|
# ImpalaTestMatrix.add_dimension('file_format', 'seq', 'text')
|
|
# ImpalaTestMatrix.add_dimension('agg_func', 'min', 'max', 'sum')
|
|
# ImpalaTestMatrix.add_dimension('col_type', 'int', 'bool')
|
|
# test_vectors = ImpalaTestMatrix.generate_test_vectors(...)
|
|
#
|
|
# Would return a collection of ImpalaTestVectors, with each one containing a
|
|
# combination of file_format, agg_func, and col_type:
|
|
# seq, min, int
|
|
# text, max, bool
|
|
# ...
|
|
#
|
|
# A ImpalaTestVector is an object itself, and the 'get_value' function is used to
|
|
# extract the actual value from the ImpalaTestVector for this particular combination:
|
|
# test_vector = test_vectors[0]
|
|
# print test_vector.get_value('file_format')
|
|
#
|
|
# The combinations of ImpalaTestVectors generated can be done in two ways: pairwise
|
|
# and exhaustive. Pairwise provides a way to get good coverage and reduce the total
|
|
# number of combinations generated where exhaustive will generate all valid
|
|
# combinations.
|
|
#
|
|
# Finally, the ImpalaTestMatrix also provides a way to add constraints to the vectors
|
|
# that are generated. This is useful to filter out invalid combinations. These can
|
|
# be added before calling 'generate_test_vectors'. The constraint is a function that
|
|
# accepts a ImpalaTestVector object and returns true if the vector is valid, false
|
|
# otherwise. For example, if we want to make sure 'bool' columns are not used with 'sum':
|
|
#
|
|
# ImpalaTestMatrix.add_constraint(lambda v:\
|
|
# not (v.get_value('col_type') == 'bool' and v.get_value('agg_func') == 'sum'))
|
|
#
|
|
# Additional examples of usage can be found within the test suites.
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
from collections import OrderedDict
|
|
from itertools import product
|
|
from copy import deepcopy
|
|
import random
|
|
import logging
|
|
import os
|
|
|
|
|
|
LOG = logging.getLogger(__name__)
|
|
VECTOR = 'vector'
|
|
# Literal constants to refer to some standard dimension names.
|
|
EXEC_OPTION = 'exec_option'
|
|
PROTOCOL = 'protocol'
|
|
TABLE_FORMAT = 'table_format'
|
|
# Literal constants to refer protocol names.
|
|
BEESWAX = 'beeswax'
|
|
HS2 = 'hs2'
|
|
HS2_HTTP = 'hs2-http'
|
|
|
|
|
|
def assert_exec_option_key(key):
|
|
assert key.islower(), "Exec option " + key + " is not in lower case"
|
|
|
|
|
|
# A list of test dimension values.
|
|
class ImpalaTestDimension(list):
|
|
def __init__(self, name, *args):
|
|
self.name = name
|
|
self.extend([ImpalaTestVector.Value(name, arg) for arg in args])
|
|
|
|
|
|
# A test vector that passed to test method. The ImpalaTestVector can be used to
|
|
# extract values for the specified dimension(s)
|
|
class ImpalaTestVector(object):
|
|
def __init__(self, vector_values):
|
|
self.vector_values = vector_values
|
|
|
|
def get_value_with_default(self, name, default_value):
|
|
for vector_value in self.vector_values:
|
|
if vector_value.name == name:
|
|
return vector_value.value
|
|
return default_value
|
|
|
|
def get_value(self, name):
|
|
for vector_value in self.vector_values:
|
|
if vector_value.name == name:
|
|
return vector_value.value
|
|
raise ValueError("Test vector does not contain value '%s'" % name)
|
|
|
|
def get_protocol(self):
|
|
return self.get_value(PROTOCOL)
|
|
|
|
def get_table_format(self):
|
|
return self.get_value(TABLE_FORMAT)
|
|
|
|
def get_exec_option_dict(self):
|
|
return self.get_value(EXEC_OPTION)
|
|
|
|
def get_exec_option(self, option_name):
|
|
value = self.get_value(EXEC_OPTION).get(option_name.lower())
|
|
assert value is not None
|
|
return value
|
|
|
|
def set_exec_option(self, option_name, option_value):
|
|
self.get_value(EXEC_OPTION)[option_name.lower()] = str(option_value)
|
|
|
|
def unset_exec_option(self, option_name):
|
|
del self.get_value(EXEC_OPTION)[option_name.lower()]
|
|
|
|
def __str__(self):
|
|
return ' | '.join(['%s' % vector_value for vector_value in self.vector_values])
|
|
|
|
def __repr__(self):
|
|
return str(self)
|
|
|
|
# Each value in a test vector is wrapped in the Value object. This wrapping is
|
|
# done internally so this object should never need to be created by the user.
|
|
class Value(object):
|
|
def __init__(self, name, value):
|
|
self.name = name
|
|
self.value = value
|
|
|
|
def __str__(self):
|
|
return '"%s: %s"' % (self.name, self.value)
|
|
|
|
def __repr__(self):
|
|
return str(self)
|
|
|
|
|
|
# Matrix -> Collection of vectors
|
|
# Vector -> Call to get specific values
|
|
class ImpalaTestMatrix(object):
|
|
def __init__(self, *args):
|
|
self.dimensions = OrderedDict((arg.name, arg) for arg in args)
|
|
self.constraint_list = list()
|
|
self.independent_exec_option_names = set()
|
|
|
|
def add_dimension(self, dimension):
|
|
self.dimensions[dimension.name] = dimension
|
|
if dimension.name == EXEC_OPTION:
|
|
for name in list(self.independent_exec_option_names):
|
|
LOG.warn("Reassigning {} dimension will remove exec option {}={} that was "
|
|
"independently declared through add_exec_option_dimension.".format(
|
|
EXEC_OPTION, name, [v.value for v in self.dimensions[name]]))
|
|
self.clear_dimension(name)
|
|
|
|
def assert_unique_exec_option_key(self, key):
|
|
"""Assert that 'exec_option' dimension exist and 'key' is not exist yet
|
|
in self.dimension['exec_option']."""
|
|
assert_exec_option_key(key)
|
|
assert EXEC_OPTION in self.dimensions, (
|
|
"Must have '" + EXEC_OPTION + "' dimension previously declared!")
|
|
|
|
for vector in self.dimensions[EXEC_OPTION]:
|
|
assert key not in vector.value, (
|
|
"'{}' is already exist in '{}' dimension!".format(key, EXEC_OPTION))
|
|
|
|
# 'key' must not previously declared with add_exec_option_dimension().
|
|
assert key not in self.independent_exec_option_names, (
|
|
"['{}']['{}'] was previously declared with non-unique value: {}".format(
|
|
EXEC_OPTION, key, [dim.value for dim in self.dimensions[key]]))
|
|
|
|
def add_mandatory_exec_option(self, key, value):
|
|
"""Append key=value pair into 'exec_option' dimension."""
|
|
self.assert_unique_exec_option_key(key)
|
|
|
|
for vector in self.dimensions[EXEC_OPTION]:
|
|
vector.value[key] = value
|
|
|
|
def add_exec_option_dimension(self, dimension):
|
|
"""
|
|
Add 'dimension' into 'self.dimensions' and memorize the name.
|
|
During vector generation, all dimensions registered through this method will be
|
|
embedded into 'exec_option' dimension. This is intended to maintain pairwise and
|
|
exhaustive combination correct while eliminating the need for individual test method
|
|
to append the custom exec options into 'exec_option' dimension themself.
|
|
"""
|
|
self.assert_unique_exec_option_key(dimension.name)
|
|
assert len(dimension) > 1, (
|
|
"Dimension " + dimension.name + " must have more than 1 possible value! "
|
|
"Use add_mandatory_exec_option() instead.")
|
|
|
|
self.add_dimension(dimension)
|
|
self.independent_exec_option_names.add(dimension.name)
|
|
|
|
def clear(self):
|
|
self.dimensions.clear()
|
|
self.independent_exec_option_names = set()
|
|
|
|
def clear_dimension(self, dimension_name):
|
|
del self.dimensions[dimension_name]
|
|
self.independent_exec_option_names.discard(dimension_name)
|
|
|
|
def has_dimension(self, dimension_name):
|
|
return dimension_name in self.dimensions
|
|
|
|
def generate_test_vectors(self, exploration_strategy):
|
|
if not self.dimensions:
|
|
return list()
|
|
# TODO: Check valid exploration strategies, provide more options for exploration
|
|
if exploration_strategy == 'exhaustive':
|
|
return self.__generate_exhaustive_combinations()
|
|
elif exploration_strategy in ['core', 'pairwise']:
|
|
return self.__generate_pairwise_combinations()
|
|
else:
|
|
raise ValueError('Unknown exploration strategy: %s' % exploration_strategy)
|
|
|
|
def __deepcopy_vector_values(self, vector_values):
|
|
"""Return a deepcopy of vector_values and merge exec options declared through
|
|
add_exec_option_dimension() into 'exec_option' dimension."""
|
|
values = []
|
|
exec_values = []
|
|
exec_option = None
|
|
for val in vector_values:
|
|
if val.name == EXEC_OPTION:
|
|
# 'exec_option' is a map. We need to deepcopy the value for each vector.
|
|
exec_option = deepcopy(val.value)
|
|
elif val.name in self.independent_exec_option_names:
|
|
# save this to merge into exec_option later.
|
|
exec_values.append(val)
|
|
else:
|
|
values.append(val)
|
|
if self.independent_exec_option_names:
|
|
assert exec_option is not None, (
|
|
"Must have '" + EXEC_OPTION + "' dimension previously declared!")
|
|
for val in exec_values:
|
|
exec_option[val.name] = val.value
|
|
if exec_option:
|
|
values.append(ImpalaTestVector.Value(EXEC_OPTION, exec_option))
|
|
return values
|
|
|
|
def __generate_exhaustive_combinations(self):
|
|
return [ImpalaTestVector(self.__deepcopy_vector_values(vec))
|
|
for vec in product(*self.__extract_vector_values()) if self.is_valid(vec)]
|
|
|
|
def __generate_pairwise_combinations(self):
|
|
# Pairwise fails if the number of inputs == 1. Use exhaustive in this case the
|
|
# results will be the same.
|
|
if len(self.dimensions) == 1:
|
|
return self.__generate_exhaustive_combinations()
|
|
vals = self.__extract_vector_values()
|
|
all_vectors = [v for v in product(*vals) if self.is_valid(v)]
|
|
# Add possibility to shuffle vectors to get different covering vector set.
|
|
# This could excercise 3+ way combinations skipped by the pair wise algorithm.
|
|
seed = os.environ.get('IMPALA_TEST_VECTOR_SEED', None)
|
|
if seed:
|
|
rnd = random.Random(seed)
|
|
rnd.shuffle(all_vectors)
|
|
found = set()
|
|
result = []
|
|
# Originally allpairspy was used for vector set generation to cover all pairs,
|
|
# but it turned out to be unreliable when using constraints (IMPALA-13125). Below
|
|
# is a simple implementation that may use more vectors than needed but will always
|
|
# cover all parameter pairs if possible (constraints can lead to pairs that can't
|
|
# be covered). A caveat is that first the product of all dimensions is needed
|
|
# ('all_vectors'), which grows exponentially with the number of dimensions, but the
|
|
# vector counts in Impala tests are still manageable.
|
|
#
|
|
# Note that there is not much to optimize in the test suites I checked, because due
|
|
# to the constraints and the size differences between dimensions the vector set
|
|
# is dictated by a few dimensions (file_format+exec_options) and this set can easily
|
|
# cover pairs with other dimensions.
|
|
#
|
|
# TODO: is there a nicer algorithm / is it needed?
|
|
# pair creation could be modelled as a bipartite graph with dimension pairs A and
|
|
# test vectors B as vertices, and a minimal set of B would be needed to have
|
|
# adjacent node for each vertex in A - I am pretty sure that this is polynomial, but
|
|
# didn't do the research
|
|
# The following steps look for "better vectors" first that cover more dimension pairs
|
|
# to avoid very suboptimal solutions - the example on allpairspy site was covered
|
|
# with 25 vectors instead of the 21 of by allpairspy, which seems acceptable.
|
|
remaining = self.__pairwise_step(all_vectors, result, found, len(self.dimensions))
|
|
remaining = self.__pairwise_step(remaining, result, found, 2)
|
|
remaining = self.__pairwise_step(remaining, result, found, 1)
|
|
assert len(remaining) == 0
|
|
|
|
res = [ImpalaTestVector(self.__deepcopy_vector_values(vec))
|
|
for vec in result]
|
|
return res
|
|
|
|
def add_constraint(self, constraint_func):
|
|
self.constraint_list.append(constraint_func)
|
|
|
|
def clear_constraints(self):
|
|
self.constraint_list = list()
|
|
|
|
def __extract_vector_values(self):
|
|
# The data is stored as a tuple of (name, [val1, val2, val3]). So extract the
|
|
# actual values from this
|
|
return [v[1] for v in self.dimensions.items()]
|
|
|
|
def is_valid(self, vector):
|
|
assert isinstance(vector, tuple)
|
|
assert len(vector) == len(self.dimensions)
|
|
for constraint in self.constraint_list:
|
|
if not constraint(ImpalaTestVector(vector)):
|
|
return False
|
|
return True
|
|
|
|
def __pairwise_step(self, vectors, results, pairs_covered, min_cover_count):
|
|
""" Simple algorithm to select a subset of 'vectors' (each with N items) to cover
|
|
every parameter pair.
|
|
With 'min_cover_count'=1 all pairs will be covered (if possible), for bigger
|
|
values only those vectors will be selected that cover at least 'min_cover_count'
|
|
new pairs and the unused vectors will be returned in the result of the function.
|
|
'pairs_covered' is a set of the already covered pairs. The key is a tuple of 4
|
|
elements (i, v[i], j, v[j]) where i<j and both are < N. Each vector covers
|
|
N * (N - 1) pairs.
|
|
"""
|
|
remaining = []
|
|
for v in vectors:
|
|
cnt = 0
|
|
for i, x in enumerate(v):
|
|
for j, y in enumerate(v[i + 1:], i + 1):
|
|
t = (i, x, j, y)
|
|
if t not in pairs_covered:
|
|
cnt += 1
|
|
if cnt == 0: continue
|
|
if cnt < min_cover_count:
|
|
remaining.append(v)
|
|
continue
|
|
results.append(v)
|
|
for i, x in enumerate(v):
|
|
for j, y in enumerate(v[i + 1:], i + 1):
|
|
t = (i, x, j, y)
|
|
pairs_covered.add(t)
|
|
return remaining
|