Files
impala/tests/query_test/test_decimal_casting.py
Csaba Ringhofer f98b697c7b IMPALA-13929: Make 'functional-query' the default workload in tests
This change adds get_workload() to ImpalaTestSuite and removes it
from all test suites that already returned 'functional-query'.
get_workload() is also removed from CustomClusterTestSuite which
used to return 'tpch'.

All other changes besides impala_test_suite.py and
custom_cluster_test_suite.py are just mass removals of
get_workload() functions.

The behavior is only changed in custom cluster tests that didn't
override get_workload(). By returning 'functional-query' instead
of 'tpch', exploration_strategy() will no longer return 'core' in
'exhaustive' test runs. See IMPALA-3947 on why workload affected
exploration_strategy. An example for affected test is
TestCatalogHMSFailures which was skipped both in core and exhaustive
runs before this change.

get_workload() functions that return a different workload than
'functional-query' are not changed - it is possible that some of
these also don't handle exploration_strategy() as expected, but
individually checking these tests is out of scope in this patch.

Change-Id: I9ec6c41ffb3a30e1ea2de773626d1485c69fe115
Reviewed-on: http://gerrit.cloudera.org:8080/22726
Reviewed-by: Riza Suminto <riza.suminto@cloudera.com>
Reviewed-by: Daniel Becker <daniel.becker@cloudera.com>
Tested-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
2025-04-08 07:12:55 +00:00

181 lines
7.7 KiB
Python

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Validates that casting to Decimal works.
#
from __future__ import absolute_import, division, print_function
from builtins import range
from decimal import Decimal, getcontext, ROUND_DOWN, ROUND_HALF_UP
from random import randint
from tests.common.impala_test_suite import ImpalaTestSuite
from tests.common.test_dimensions import create_exec_option_dimension_from_dict
from tests.common.test_vector import ImpalaTestDimension, ImpalaTestMatrix
class TestDecimalCastingBase(ImpalaTestSuite):
"""Test Suite to verify that casting to Decimal works.
Specifically, this test suite ensures that:
- overflows and underflows and handled correctly.
- casts from decimal/string to their exact decimal types are correct.
- max/min/NULL/0 can be expressed with their respective decimal types.
- TODO: Add cases for cast from float/double to decimal types.
"""
# We can cast for numerics or string types.
CAST_FROM = ['string', 'number']
# Set the default precision to 38 to operate on decimal values.
getcontext().prec = 38
# Represents a 0 in decimal
DECIMAL_ZERO = Decimal('0')
@classmethod
def add_test_dimensions(cls):
cls.ImpalaTestMatrix = ImpalaTestMatrix()
# Core/pairwise only deals with precision 6, 16, 26 (different integer types)
precision = [6, 16, 26]
# (0 <= scale <= 38)
scale = list(range(0, 39))
if cls.exploration_strategy() == 'exhaustive':
# (0 < precision <= 38)
precision = list(range(1, 39))
cls.ImpalaTestMatrix.add_dimension(ImpalaTestDimension('precision', *precision))
cls.ImpalaTestMatrix.add_dimension(ImpalaTestDimension('scale', *scale))
cls.ImpalaTestMatrix.add_dimension(
ImpalaTestDimension('cast_from', *TestDecimalCasting.CAST_FROM))
cls.ImpalaTestMatrix.add_dimension(create_exec_option_dimension_from_dict(
{'decimal_v2': ['false', 'true']}))
cls.iterations = 1
# Scale must be less than or equal to precision.
cls.ImpalaTestMatrix.add_constraint(
lambda v: v.get_value('scale') <= v.get_value('precision'))
def _gen_decimal_val(self, precision, scale):
"""Generates a Decimal object with the exact number of digits as the precision."""
# Generates numeric string which has as many digits as the precision.
num = str(randint(10**(precision - 1), int('9' * precision)))
# Incorporate scale into the string.
if scale != 0: num = "{0}.{1}".format(num[:-scale], num[precision - scale:])
# Convert the generated decimal string into a Decimal object and return a -ive/+ive
# version of it with equal probability.
return Decimal(num) if randint(0, 1) else Decimal("-{0}".format(num))
def _assert_decimal_result(self, cast, actual, expected):
assert expected == actual, "Cast: {0}, Expected: {1}, Actual: {2}".format(cast,
expected, actual)
def _normalize_cast_expr(self, decimal_val, precision, cast_from):
if cast_from == 'string':
return "select cast('{0}' as Decimal({1},{2}))"
else:
return "select cast({0} as Decimal({1},{2}))"
class TestDecimalCasting(TestDecimalCastingBase):
@classmethod
def add_test_dimensions(cls):
super(TestDecimalCasting, cls).add_test_dimensions()
def test_min_max_zero_null(self, vector):
"""Sanity test at limits.
Verify that:
- We can read decimal values at their +ive and -ive limits.
- 0 is expressible in all decimal types.
- NULL is expressible in all decimal types
"""
precision = vector.get_value('precision')
scale = vector.get_value('scale')
dec_max = Decimal('{0}.{1}'.format('9' * (precision - scale), '9' * scale))
# Multiplying large values eith -1 can produce an overflow.
dec_min = Decimal('-{0}'.format(str(dec_max)))
cast = self._normalize_cast_expr(dec_max, precision, vector.get_value('cast_from'))
# Test max
res = Decimal(self.execute_scalar(cast.format(dec_max, precision, scale)))
self._assert_decimal_result(cast, res, dec_max)
# Test Min
res = Decimal(self.execute_scalar(cast.format(dec_min, precision, scale)))
self._assert_decimal_result(cast, res, dec_min)
# Test zero
res = Decimal(self.execute_scalar(
cast.format(TestDecimalCasting.DECIMAL_ZERO, precision, scale)))
self._assert_decimal_result(cast, res, TestDecimalCasting.DECIMAL_ZERO)
# Test NULL
null_cast = "select cast(NULL as Decimal({0}, {1}))".format(precision, scale)
res = self.execute_scalar(null_cast)
self._assert_decimal_result(null_cast, res, 'NULL')
def test_exact(self, vector):
"""Test to verify that an exact representation of the desired Decimal type is
maintained."""
precision = vector.get_value('precision')
scale = vector.get_value('scale')
for i in range(self.iterations):
val = self._gen_decimal_val(precision, scale)
cast = self._normalize_cast_expr(val, precision, vector.get_value('cast_from'))\
.format(val, precision, scale)
res = Decimal(self.execute_scalar(cast))
self._assert_decimal_result(cast, res, val)
def test_overflow(self, vector):
"""Test to verify that we always return NULL when trying to cast a number with greater
precision that its intended decimal type"""
precision = vector.get_value('precision')
scale = vector.get_value('scale')
for i in range(self.iterations):
# Generate a decimal with a larger precision than the one we're casting to.
from_precision = randint(precision + 1, 39)
val = self._gen_decimal_val(from_precision, scale)
cast = self._normalize_cast_expr(val, from_precision,
vector.get_value('cast_from')).format(val, precision, scale)
self.execute_query_expect_failure(self.client, cast)
class TestDecimalCastingUnderflow(TestDecimalCastingBase):
@classmethod
def add_test_dimensions(cls):
super(TestDecimalCastingUnderflow, cls).add_test_dimensions()
# "Cannot underflow scale when precision and scale are equal"
cls.ImpalaTestMatrix.add_constraint(
lambda v: v.get_value('scale') < v.get_value('precision'))
def test_underflow(self, vector):
"""Test to verify that we truncate when the scale of the number being cast is higher
than the target decimal type (with no change in precision).
"""
precision = vector.get_value('precision')
scale = vector.get_value('scale')
is_decimal_v2 = vector.get_value('exec_option')['decimal_v2'] == 'true'
cast_from = vector.get_value('cast_from')
for i in range(self.iterations):
from_scale = randint(scale + 1, precision)
val = self._gen_decimal_val(precision, from_scale)
cast = self._normalize_cast_expr(val, precision, cast_from)\
.format(val, precision, scale)
res = Decimal(self.execute_scalar(cast, vector.get_value('exec_option')))
if is_decimal_v2:
expected_val = val.quantize(Decimal('0e-%s' % scale), rounding=ROUND_HALF_UP)
else:
expected_val = val.quantize(Decimal('0e-%s' % scale), rounding=ROUND_DOWN)
self._assert_decimal_result(cast, res, expected_val)