Files
impala/testdata/workloads/functional-query/queries/QueryTest/aggregation.test
Taras Bobrovytsky 529a5f99b9 IMPALA-4787: Optimize APPX_MEDIAN() memory usage
Before this change, ReservoirSample functions (such as APPX_MEDIAN())
allocated memory for 20,000 elements up front per grouping key. This
caused inefficient memory usage for aggregations with many grouping
keys.

This patch fixes this by initially allocating memory for 16 elements.
Once the buffer becomes full, we reallocate a new buffer with double
capacity and copy the original buffer into the new one. We continue
doubling the buffer size until the buffer has room for 20,000 elements
as before.

Testing:
Added some EE APPX_MEDIAN() tests on larger datasets that exercise the
resize code path.

Perf Benchrmark (about 35,000 elements per bucket):

SELECT MAX(a) from (
  SELECT c1, appx_median(c2) as a FROM benchmark GROUP BY c1) t

BEFORE: 11s067ms
Operator       #Hosts   Avg Time   Max Time   #Rows  Est. #Rows  Peak Mem  Est. Peak Mem  Detail
-------------------------------------------------------------------------------------------------------------------------
06:AGGREGATE        1  124.726us  124.726us       1           1  28.00 KB        -1.00 B  FINALIZE
05:EXCHANGE         1   29.544us   29.544us       3           1         0        -1.00 B  UNPARTITIONED
02:AGGREGATE        3   86.406us  120.372us       3           1  44.00 KB       10.00 MB
04:AGGREGATE        3    1s840ms    2s824ms   2.00K          -1   1.02 GB      128.00 MB  FINALIZE
03:EXCHANGE         3    1s163ms    1s989ms   6.00K          -1         0              0  HASH(c1)
01:AGGREGATE        3    3s356ms    3s416ms   6.00K          -1   1.95 GB      128.00 MB  STREAMING
00:SCAN HDFS        3   64.962ms   65.490ms  65.54M          -1  25.97 MB       64.00 MB  tpcds_10_parquet.benchmark

AFTER: 9s465ms
Operator       #Hosts   Avg Time  Max Time   #Rows  Est. #Rows  Peak Mem  Est. Peak Mem  Detail
------------------------------------------------------------------------------------------------------------------------
06:AGGREGATE        1   73.961us  73.961us       1           1  28.00 KB        -1.00 B  FINALIZE
05:EXCHANGE         1   18.101us  18.101us       3           1         0        -1.00 B  UNPARTITIONED
02:AGGREGATE        3   75.795us  83.969us       3           1  44.00 KB       10.00 MB
04:AGGREGATE        3    1s608ms   2s683ms   2.00K          -1   1.02 GB      128.00 MB  FINALIZE
03:EXCHANGE         3  826.683ms   1s322ms   6.00K          -1         0              0  HASH(c1)
01:AGGREGATE        3    2s457ms   2s672ms   6.00K          -1   3.14 GB      128.00 MB  STREAMING
00:SCAN HDFS        3   81.514ms  89.056ms  65.54M          -1  25.94 MB       64.00 MB  tpcds_10_parquet.benchmark

Memory Benchmark (about 12 elements per bucket):

SELECT MAX(a) FROM (
  SELECT ss_customer_sk, APPX_MEDIAN(ss_sold_date_sk) as a
  FROM tpcds_parquet.store_sales
  GROUP BY ss_customer_sk) t

BEFORE: 7s477ms
Operator       #Hosts   Avg Time   Max Time    #Rows  Est. #Rows  Peak Mem  Est. Peak Mem  Detail
---------------------------------------------------------------------------------------------------------------------
06:AGGREGATE        1  114.686us  114.686us        1           1  28.00 KB        -1.00 B  FINALIZE
05:EXCHANGE         1   18.214us   18.214us        3           1         0        -1.00 B  UNPARTITIONED
02:AGGREGATE        3  147.055us  165.464us        3           1  28.00 KB       10.00 MB
04:AGGREGATE        3    2s043ms    2s147ms   14.82K          -1   4.94 GB      128.00 MB  FINALIZE
03:EXCHANGE         3  840.528ms  943.254ms   15.61K          -1         0              0  HASH(ss_customer_sk)
01:AGGREGATE        3    1s769ms    1s869ms   15.61K          -1   5.32 GB      128.00 MB  STREAMING
00:SCAN HDFS        3   17.941ms   37.109ms  183.59K          -1   1.94 MB       16.00 MB  tpcds_parquet.store_sales

AFTER: 434ms
Operator       #Hosts   Avg Time   Max Time    #Rows  Est. #Rows  Peak Mem  Est. Peak Mem  Detail
---------------------------------------------------------------------------------------------------------------------
06:AGGREGATE        1  125.915us  125.915us        1           1  28.00 KB        -1.00 B  FINALIZE
05:EXCHANGE         1   72.179us   72.179us        3           1         0        -1.00 B  UNPARTITIONED
02:AGGREGATE        3   79.054us   83.385us        3           1  28.00 KB       10.00 MB
04:AGGREGATE        3    6.559ms    7.669ms   14.82K          -1  17.32 MB      128.00 MB  FINALIZE
03:EXCHANGE         3   67.370us   85.068us   15.60K          -1         0              0  HASH(ss_customer_sk)
01:AGGREGATE        3   19.245ms   24.472ms   15.60K          -1   9.48 MB      128.00 MB  STREAMING
00:SCAN HDFS        3   53.173ms   55.844ms  183.59K          -1   1.18 MB       16.00 MB  tpcds_parquet.store_sales

Change-Id: I99adaad574d4fb0a3cf38c6cbad8b2a23df12968
Reviewed-on: http://gerrit.cloudera.org:8080/6025
Reviewed-by: Taras Bobrovytsky <tbobrovytsky@cloudera.com>
Tested-by: Impala Public Jenkins
2017-03-16 05:59:40 +00:00

1258 lines
30 KiB
Plaintext

====
---- QUERY
# test a larger dataset, includes nulls
# the exact result could vary slightly due to numeric instability
# 0.001 is a conservative upperbound on the possible difference in results
SELECT abs(cast(variance(tinyint_col) as double) - 6.66741) < 0.001,
abs(cast(variance(double_col) as double) - 8470806.708) < 0.001
from alltypesagg
---- RESULTS
true,true
---- TYPES
boolean, boolean
====
---- QUERY
# No tuples processed (should return null)
SELECT variance(tinyint_col), stddev(smallint_col), variance_pop(int_col),
stddev_pop(bigint_col)
from alltypesagg WHERE id = -9999999
---- RESULTS
NULL,NULL,NULL,NULL
---- TYPES
double, double, double, double
====
---- QUERY
# exactly 1 tuple processed (variance_pop & stddev_pop are 0, stddev and variance
# are NULL)
SELECT variance(tinyint_col), variance_samp(smallint_col), variance_pop(int_col),
stddev(smallint_col), stddev_samp(smallint_col), stddev_pop(bigint_col)
from alltypesagg WHERE id = 1006
---- RESULTS
NULL,NULL,0,NULL,NULL,0
---- TYPES
double, double, double, double, double, double
====
---- QUERY
# Includes one row which is null, and test the aliases for variance() as well
SELECT variance(tinyint_col), variance(smallint_col), variance(int_col),
variance(bigint_col), variance(float_col), variance(double_col),
var_samp(double_col), variance_samp(double_col)
from alltypesagg WHERE id >= 1000 AND id < 1006
---- RESULTS
2.5,2.5,2.5,250,3.025,255.025,255.025,255.025
---- TYPES
double, double, double, double, double, double,double, double
====
---- QUERY
# Test population variance (including the var_pop() alias)
SELECT variance_pop(tinyint_col), variance_pop(smallint_col), variance_pop(int_col),
variance_pop(bigint_col), variance_pop(float_col), variance_pop(double_col),
var_pop(double_col)
from alltypesagg WHERE id >= 1000 AND id < 1006
---- RESULTS
2,2,2,200,2.42,204.02,204.02
---- TYPES
double, double, double, double, double, double, double
====
---- QUERY
SELECT round(stddev(tinyint_col), 5),
round(stddev(smallint_col), 5),
round(stddev(int_col), 5),
round(stddev(bigint_col), 5),
round(stddev(float_col), 5),
round(stddev(double_col), 5),
round(stddev_samp(double_col), 5)
from alltypesagg WHERE id >= 1000 AND id < 1006
---- RESULTS
1.58114,1.58114,1.58114,15.81139,1.73925,15.96950,15.96950
---- TYPES
double, double, double, double, double, double, double
====
---- QUERY
# no grouping exprs, cols contain nulls except for bool cols
SELECT round(stddev_pop(tinyint_col), 5),
round(stddev_pop(smallint_col), 5),
round(stddev_pop(int_col), 5),
round(stddev_pop(bigint_col), 5),
round(stddev_pop(float_col), 5),
round(stddev_pop(double_col), 5)
from alltypesagg WHERE id >= 1000 AND id < 1006
---- RESULTS
1.41421,1.41421,1.41421,14.14214,1.55563,14.28356
---- TYPES
double, double, double, double, double, double
====
---- QUERY
# no grouping exprs, cols contain nulls except for bool cols
select count(bool_col), min(bool_col), max(bool_col)
from alltypesagg where day is not null
---- RESULTS
10000,false,true
---- TYPES
bigint, boolean, boolean
====
---- QUERY
# no grouping exprs, cols contain nulls
select count(*), count(tinyint_col), min(tinyint_col), max(tinyint_col), sum(tinyint_col),
avg(tinyint_col)
from alltypesagg where day is not null
---- RESULTS
10000,9000,1,9,45000,5
---- TYPES
bigint, bigint, tinyint, tinyint, bigint, double
====
---- QUERY
select count(*), count(smallint_col), min(smallint_col), max(smallint_col), sum(smallint_col),
avg(smallint_col)
from alltypesagg where day is not null
---- RESULTS
10000,9900,1,99,495000,50
---- TYPES
bigint, bigint, smallint, smallint, bigint, double
====
---- QUERY
select count(*), count(int_col), min(int_col), max(int_col), sum(int_col), avg(int_col)
from alltypesagg where day is not null
---- RESULTS
10000,9990,1,999,4995000,500
---- TYPES
bigint, bigint, int, int, bigint, double
====
---- QUERY
select count(*), count(bigint_col), min(bigint_col), max(bigint_col), sum(bigint_col),
avg(bigint_col)
from alltypesagg where day is not null
---- RESULTS
10000,9990,10,9990,49950000,5000
---- TYPES
bigint, bigint, bigint, bigint, bigint, double
====
---- QUERY
select count(*), count(float_col), min(float_col), max(float_col), sum(float_col),
avg(float_col)
from alltypesagg where day is not null
---- RESULTS
10000,9990,1.100000023841858,1098.900024414062,5494499.999767542,549.9999999767309
---- TYPES
bigint, bigint, float, float, double, double
====
---- QUERY
select count(*), count(double_col), min(double_col), max(double_col), round(sum(double_col), 0),
round(avg(double_col), 0)
from alltypesagg where day is not null
---- RESULTS
10000,9990,10.1,10089.9,50449500,5050
---- TYPES
bigint, bigint, double, double, double, double
====
---- QUERY
select count(*), min(string_col), max(string_col), min(date_string_col),
max(date_string_col)
from alltypesagg where day is not null
---- RESULTS
10000,'0','999','01/01/10','01/10/10'
---- TYPES
bigint, string, string, string, string
====
---- QUERY
# Test for IMPALA-3018. Verify update() functions of min() and max() handle
# zero-length string correctly.
select max(str), min(str) from (values ('aaa' as str), (''), ('123')) as tmp
---- RESULTS
'aaa',''
---- TYPES
string,string
====
---- QUERY
# Test for IMPALA-3018. Verify update() function of last_value() handles
# zero-length string correctly.
select last_value(b) over (partition by a order by d) from functional.nulltable;
---- RESULTS
''
---- TYPES
string
====
---- QUERY
# Test for IMPALA-3018. Verify update() function of first_value() handles
# zero-length string correctly.
select first_value(b) over (partition by a order by d) from functional.nulltable;
---- RESULTS
''
---- TYPES
string
====
---- QUERY
# grouping by different data types, with NULLs
select tinyint_col, count(*) from alltypesagg where day is not null group by 1 order by 1
---- RESULTS
1,1000
2,1000
3,1000
4,1000
5,1000
6,1000
7,1000
8,1000
9,1000
NULL,1000
---- TYPES
tinyint, bigint
====
---- QUERY
# grouping by different data types, with NULLs, grouping expr missing from select list
select bool_col,min(bool_col),max(bool_col) from alltypesagg where day is not null group by 1
---- RESULTS
false,false,false
true,true,true
---- TYPES
boolean,boolean,boolean
====
---- QUERY
select count(*) from alltypesagg where day is not null group by tinyint_col
---- RESULTS
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
---- TYPES
bigint
====
---- QUERY
select smallint_col % 10, count(*) from alltypesagg where day is not null group by 1
---- RESULTS
3,1000
NULL,100
8,1000
7,1000
0,900
6,1000
9,1000
5,1000
4,1000
1,1000
2,1000
---- TYPES
smallint, bigint
====
---- QUERY
select count(*) from alltypesagg where day is not null group by smallint_col % 10
---- RESULTS
1000
100
1000
1000
900
1000
1000
1000
1000
1000
1000
---- TYPES
bigint
====
---- QUERY
select int_col % 10, count(*) from alltypesagg where day is not null group by 1
---- RESULTS
4,1000
9,1000
NULL,10
6,1000
5,1000
2,1000
0,990
1,1000
3,1000
8,1000
7,1000
---- TYPES
int, bigint
====
---- QUERY
select count(*) from alltypesagg where day is not null group by int_col % 10
---- RESULTS
1000
1000
10
1000
1000
1000
990
1000
1000
1000
1000
---- TYPES
bigint
====
---- QUERY
# Check that ALL inside aggregates is correct
select count(ALL *) from alltypesagg where day is not null group by int_col % 10
---- RESULTS
1000
1000
10
1000
1000
1000
990
1000
1000
1000
1000
---- TYPES
bigint
====
---- QUERY
select bigint_col % 100, count(*) from alltypesagg where day is not null group by 1
---- RESULTS
60,1000
70,1000
20,1000
NULL,10
40,1000
80,1000
30,1000
0,990
50,1000
90,1000
10,1000
---- TYPES
bigint, bigint
====
---- QUERY
select count(*) from alltypesagg where day is not null group by bigint_col % 100
---- RESULTS
1000
1000
1000
10
1000
1000
1000
990
1000
1000
1000
---- TYPES
bigint
====
---- QUERY
select float_col, float_col * 2, count(*) from alltypes group by 1, 2
---- RESULTS
0,0,730
3.299999952316284,6.599999904632568,730
8.800000190734863,17.60000038146973,730
6.599999904632568,13.19999980926514,730
7.699999809265137,15.39999961853027,730
2.200000047683716,4.400000095367432,730
5.5,11,730
1.100000023841858,2.200000047683716,730
9.899999618530273,19.79999923706055,730
4.400000095367432,8.800000190734863,730
---- TYPES
float, double, bigint
====
---- QUERY
select count(*) from alltypes group by float_col
---- RESULTS
730
730
730
730
730
730
730
730
730
730
---- TYPES
bigint
====
---- QUERY
select float_col, count(*) from alltypesagg where float_col is null and day is not null group by 1
---- RESULTS
NULL,10
---- TYPES
float, bigint
====
---- QUERY
select double_col, double_col * 2, count(*) from alltypes group by 1, 2
---- RESULTS
0,0,730
90.90000000000001,181.8,730
40.4,80.8,730
20.2,40.4,730
80.8,161.6,730
10.1,20.2,730
70.7,141.4,730
50.5,101,730
30.3,60.6,730
60.6,121.2,730
---- TYPES
double, double, bigint
====
---- QUERY
select count(*) from alltypes group by double_col
---- RESULTS
730
730
730
730
730
730
730
730
730
730
---- TYPES
bigint
====
---- QUERY
select double_col, count(*) from alltypesagg where double_col is null and day is not null group by 1
---- RESULTS
NULL,10
---- TYPES
double, bigint
====
---- QUERY
select date_string_col, count(*) from alltypesagg where day is not null group by 1
---- RESULTS
'01/08/10',1000
'01/09/10',1000
'01/02/10',1000
'01/06/10',1000
'01/01/10',1000
'01/03/10',1000
'01/04/10',1000
'01/10/10',1000
'01/07/10',1000
'01/05/10',1000
---- TYPES
string, bigint
====
---- QUERY
select count(*) from alltypesagg where day is not null group by date_string_col
---- RESULTS
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
---- TYPES
bigint
====
---- QUERY
# grouping by multiple exprs, with nulls
select tinyint_col % 3, smallint_col % 3, count(*) from alltypesagg
where day = 1 group by 1, 2
---- RESULTS
0,0,120
0,1,90
0,2,90
1,0,90
1,1,120
1,2,90
2,0,90
2,1,90
2,2,120
NULL,0,30
NULL,1,30
NULL,2,30
NULL,NULL,10
---- TYPES
tinyint, smallint, bigint
====
---- QUERY
select count(*) from alltypesagg
where day = 1 group by tinyint_col % 3, smallint_col % 3
---- RESULTS
10
120
120
120
30
30
30
90
90
90
90
90
90
---- TYPES
bigint
====
---- QUERY
# same result as previous query
select tinyint_col % 3, smallint_col % 3, count(*) from alltypesagg where day = 1 group by 2, 1
---- RESULTS
0,0,120
0,1,90
0,2,90
1,0,90
1,1,120
1,2,90
2,0,90
2,1,90
2,2,120
NULL,0,30
NULL,1,30
NULL,2,30
NULL,NULL,10
---- TYPES
tinyint, smallint, bigint
====
---- QUERY
select tinyint_col % 2, smallint_col % 2, int_col % 2, bigint_col % 2, date_string_col, count(*)
from alltypesagg
where (date_string_col = '01/01/10' or date_string_col = '01/02/10') and day is not null
group by 1, 2, 3, 4, 5
---- RESULTS
1,1,1,0,'01/02/10',500
0,0,0,0,'01/02/10',400
NULL,NULL,0,0,'01/02/10',9
NULL,NULL,NULL,NULL,'01/02/10',1
0,0,0,0,'01/01/10',400
NULL,NULL,0,0,'01/01/10',9
NULL,NULL,NULL,NULL,'01/01/10',1
NULL,0,0,0,'01/02/10',90
1,1,1,0,'01/01/10',500
NULL,0,0,0,'01/01/10',90
---- TYPES
tinyint, smallint, int, bigint, string, bigint
====
---- QUERY
select count(*)
from alltypesagg
where (date_string_col = '01/01/10' or date_string_col = '01/02/10') and day is not null
group by tinyint_col % 2, smallint_col % 2, int_col % 2, bigint_col % 2, date_string_col
---- RESULTS
500
400
9
1
400
9
1
90
500
90
---- TYPES
bigint
====
---- QUERY
# no grouping cols, no matching rows
select count(*), min(tinyint_col), max(tinyint_col), sum(tinyint_col), avg(tinyint_col)
from alltypesagg
where tinyint_col = -1 and day is not null
---- RESULTS
0,NULL,NULL,NULL,NULL
---- TYPES
bigint, tinyint, tinyint, bigint, double
====
---- QUERY
select count(*), min(smallint_col), max(smallint_col), sum(smallint_col), avg(smallint_col)
from alltypesagg
where smallint_col = -1 and day is not null
---- RESULTS
0,NULL,NULL,NULL,NULL
---- TYPES
bigint, smallint, smallint, bigint, double
====
---- QUERY
select count(*), min(int_col), max(int_col), sum(int_col), avg(int_col)
from alltypesagg
where int_col = -1 and day is not null
---- RESULTS
0,NULL,NULL,NULL,NULL
---- TYPES
bigint, int, int, bigint, double
====
---- QUERY
select count(*), min(bigint_col), max(bigint_col), sum(bigint_col), avg(bigint_col)
from alltypesagg
where bigint_col = -1 and day is not null
---- RESULTS
0,NULL,NULL,NULL,NULL
---- TYPES
bigint, bigint, bigint, bigint, double
====
---- QUERY
select count(*), min(float_col), max(float_col), sum(float_col), avg(float_col)
from alltypesagg
where float_col < -1.0 and day is not null
---- RESULTS
0,NULL,NULL,NULL,NULL
---- TYPES
bigint, float, float, double, double
====
---- QUERY
select count(*), min(double_col), max(double_col), sum(double_col), avg(double_col)
from alltypesagg
where double_col < -1.0 and day is not null
---- RESULTS
0,NULL,NULL,NULL,NULL
---- TYPES
bigint, double, double, double, double
====
---- QUERY
# HAVING clauses over all aggregation functions, plus compound HAVING clauses
select int_col % 7, count(*), max(int_col) from alltypesagg where day is not null group by 1
---- RESULTS
4,1430,998
NULL,10,NULL
6,1420,993
5,1430,999
2,1430,996
0,1420,994
1,1430,995
3,1430,997
---- TYPES
int, bigint, int
====
---- QUERY
select int_col % 7, count(*) from alltypesagg where day is not null group by 1 having max(int_col) > 991
---- RESULTS
4,1430
6,1420
5,1430
2,1430
0,1420
1,1430
3,1430
---- TYPES
int, bigint
====
---- QUERY
select int_col % 7, count(*) from alltypesagg where day is not null group by 1
having max(int_col) > 991 and count(*) > 1420
---- RESULTS
4,1430
5,1430
2,1430
1,1430
3,1430
---- TYPES
int, bigint
====
---- QUERY
select int_col % 7, count(*) from alltypesagg where day is not null group by 1
having min(int_col) < 7
---- RESULTS
4,1430
6,1420
5,1430
2,1430
1,1430
3,1430
---- TYPES
int, bigint
====
---- QUERY
select int_col % 7, count(*) from alltypesagg where day is not null group by 1
having min(int_col) < 7 and count(*) > 1420
---- RESULTS
4,1430
5,1430
2,1430
1,1430
3,1430
---- TYPES
int, bigint
====
---- QUERY
select int_col % 7, count(*), sum(int_col) from alltypesagg where day is not null group by 1
---- RESULTS
4,1430,716430
NULL,10,NULL
6,1420,709290
5,1430,717860
2,1430,713570
0,1420,710710
1,1430,712140
3,1430,715000
---- TYPES
int, bigint, bigint
====
---- QUERY
select int_col % 7, count(*), sum(int_col) from alltypesagg where day is not null group by 1
having sum(int_col) >= 715000
---- RESULTS
4,1430,716430
5,1430,717860
3,1430,715000
---- TYPES
int, bigint, bigint
====
---- QUERY
select int_col % 7, count(*), sum(int_col) from alltypesagg where day is not null group by 1
having sum(int_col) >= 715000 or count(*) > 1420
---- RESULTS
4,1430,716430
5,1430,717860
2,1430,713570
1,1430,712140
3,1430,715000
---- TYPES
int, bigint, bigint
====
---- QUERY
select int_col % 7, count(*), sum(int_col) from alltypesagg where day is not null group by 1
having sum(int_col) is null
---- RESULTS
NULL,10,NULL
---- TYPES
int, bigint, bigint
====
---- QUERY
select int_col % 7, count(*), avg(int_col) from alltypesagg where day is not null group by 1
---- RESULTS
4,1430,501
NULL,10,NULL
6,1420,499.5
5,1430,502
2,1430,499
0,1420,500.5
1,1430,498
3,1430,500
---- TYPES
int, bigint, double
====
---- QUERY
select int_col % 7, count(*), avg(int_col) from alltypesagg where day is not null group by 1
having avg(int_col) > 500
---- RESULTS
4,1430,501
5,1430,502
0,1420,500.5
---- TYPES
int, bigint, double
====
---- QUERY
select int_col % 7, count(*), avg(int_col) from alltypesagg where day is not null group by 1
having avg(int_col) > 500 or count(*) = 10
---- RESULTS
4,1430,501
NULL,10,NULL
5,1430,502
0,1420,500.5
---- TYPES
int, bigint, double
====
---- QUERY
select timestamp_col, count(*) from alltypesagg where day is not null
group by timestamp_col having timestamp_col < cast('2010-01-01 01:05:20' as timestamp)
---- RESULTS
2010-01-01 00:49:11.760000000,1
2010-01-01 01:01:18.300000000,1
2010-01-01 00:17:01.360000000,1
2010-01-01 00:58:16.530000000,1
2010-01-01 00:09:00.360000000,1
2010-01-01 00:00:00,1
2010-01-01 01:00:17.700000000,1
2010-01-01 00:57:15.960000000,1
2010-01-01 00:24:02.760000000,1
2010-01-01 00:23:02.530000000,1
2010-01-01 00:45:09.900000000,1
2010-01-01 00:39:07.410000000,1
2010-01-01 00:33:05.280000000,1
2010-01-01 00:03:00.300000000,1
2010-01-01 00:20:01.900000000,1
2010-01-01 00:36:06.300000000,1
2010-01-01 00:44:09.460000000,1
2010-01-01 00:14:00.910000000,1
2010-01-01 00:31:04.650000000,1
2010-01-01 00:48:11.280000000,1
2010-01-01 01:03:19.530000000,1
2010-01-01 00:29:04.600000000,1
2010-01-01 01:02:18.910000000,1
2010-01-01 00:16:01.200000000,1
2010-01-01 00:47:10.810000000,1
2010-01-01 00:51:12.750000000,1
2010-01-01 00:55:14.850000000,1
2010-01-01 00:42:08.610000000,1
2010-01-01 00:56:15.400000000,1
2010-01-01 00:05:00.100000000,1
2010-01-01 00:43:09.300000000,1
2010-01-01 00:28:03.780000000,1
2010-01-01 00:04:00.600000000,1
2010-01-01 00:54:14.310000000,1
2010-01-01 00:26:03.250000000,1
2010-01-01 00:32:04.960000000,1
2010-01-01 00:46:10.350000000,1
2010-01-01 00:37:06.660000000,1
2010-01-01 00:50:12.250000000,1
2010-01-01 00:27:03.510000000,1
2010-01-01 00:19:01.710000000,1
2010-01-01 00:40:07.800000000,1
2010-01-01 00:07:00.210000000,1
2010-01-01 00:22:02.310000000,1
2010-01-01 00:21:02.100000000,1
2010-01-01 00:18:01.530000000,1
2010-01-01 00:11:00.550000000,1
2010-01-01 00:35:05.950000000,1
2010-01-01 00:30:04.350000000,1
2010-01-01 00:08:00.280000000,1
2010-01-01 00:34:05.610000000,1
2010-01-01 00:15:01.500000000,1
2010-01-01 00:41:08.200000000,1
2010-01-01 00:02:00.100000000,1
2010-01-01 00:01:00,1
2010-01-01 00:10:00.450000000,1
2010-01-01 00:52:13.260000000,1
2010-01-01 01:04:20.160000000,1
2010-01-01 00:12:00.660000000,1
2010-01-01 00:38:07.300000000,1
2010-01-01 00:53:13.780000000,1
2010-01-01 00:25:03,1
2010-01-01 00:59:17.110000000,1
2010-01-01 00:06:00.150000000,1
2010-01-01 00:13:00.780000000,1
---- TYPES
timestamp, bigint
====
---- QUERY
# Test NULLs in aggregate functions
select count(NULL), min(NULL), max(NULL), sum(NULL), avg(NULL) from alltypesagg
where day is not null
---- RESULTS
0,NULL,NULL,NULL,NULL
---- TYPES
bigint, boolean, boolean, bigint, double
====
---- QUERY
# Test ignored distinct in MIN and MAX with NULLs
select min(distinct NULL), max(distinct NULL) from alltypes
---- RESULTS
NULL,NULL
---- TYPES
boolean, boolean
====
---- QUERY
# Test group_concat with default delimiter. Use a subquery with an ORDER BY to
# ensure group_concat results are in a deterministic order.
select day, group_concat(string_col)
from (select * from alltypesagg where id % 100 = day order by id limit 99999) a
group by day
---- RESULTS: VERIFY_IS_EQUAL_SORTED
3,'3, 103, 203, 303, 403, 503, 603, 703, 803, 903'
5,'5, 105, 205, 305, 405, 505, 605, 705, 805, 905'
8,'8, 108, 208, 308, 408, 508, 608, 708, 808, 908'
4,'4, 104, 204, 304, 404, 504, 604, 704, 804, 904'
9,'9, 109, 209, 309, 409, 509, 609, 709, 809, 909'
2,'2, 102, 202, 302, 402, 502, 602, 702, 802, 902'
6,'6, 106, 206, 306, 406, 506, 606, 706, 806, 906'
10,'10, 110, 210, 310, 410, 510, 610, 710, 810, 910'
7,'7, 107, 207, 307, 407, 507, 607, 707, 807, 907'
1,'1, 101, 201, 301, 401, 501, 601, 701, 801, 901'
---- TYPES
int, string
====
---- QUERY
# Test group_concat with NULL (default) delimiter
select day, group_concat(string_col, NULL)
from (select * from alltypesagg where id % 100 = day order by id limit 99999) a
group by day
---- RESULTS: VERIFY_IS_EQUAL_SORTED
3,'3, 103, 203, 303, 403, 503, 603, 703, 803, 903'
5,'5, 105, 205, 305, 405, 505, 605, 705, 805, 905'
8,'8, 108, 208, 308, 408, 508, 608, 708, 808, 908'
4,'4, 104, 204, 304, 404, 504, 604, 704, 804, 904'
9,'9, 109, 209, 309, 409, 509, 609, 709, 809, 909'
2,'2, 102, 202, 302, 402, 502, 602, 702, 802, 902'
6,'6, 106, 206, 306, 406, 506, 606, 706, 806, 906'
10,'10, 110, 210, 310, 410, 510, 610, 710, 810, 910'
7,'7, 107, 207, 307, 407, 507, 607, 707, 807, 907'
1,'1, 101, 201, 301, 401, 501, 601, 701, 801, 901'
---- TYPES
int, string
====
---- QUERY
# Test group_concat with both args as NULL
select day, group_concat(NULL, NULL)
from (select * from alltypesagg where id % 100 = day order by id limit 99999) a
group by day
---- RESULTS: VERIFY_IS_EQUAL_SORTED
3,'NULL'
5,'NULL'
8,'NULL'
4,'NULL'
9,'NULL'
2,'NULL'
6,'NULL'
10,'NULL'
7,'NULL'
1,'NULL'
---- TYPES
int, string
====
---- QUERY
# Test group_concat with arrow delimiter
select day, group_concat(string_col, "->")
from (select * from alltypesagg where id % 100 = day order by id limit 99999) a
group by day
---- RESULTS: VERIFY_IS_EQUAL_SORTED
3,'3->103->203->303->403->503->603->703->803->903'
5,'5->105->205->305->405->505->605->705->805->905'
8,'8->108->208->308->408->508->608->708->808->908'
4,'4->104->204->304->404->504->604->704->804->904'
9,'9->109->209->309->409->509->609->709->809->909'
2,'2->102->202->302->402->502->602->702->802->902'
6,'6->106->206->306->406->506->606->706->806->906'
10,'10->110->210->310->410->510->610->710->810->910'
7,'7->107->207->307->407->507->607->707->807->907'
1,'1->101->201->301->401->501->601->701->801->901'
---- TYPES
int, string
====
---- QUERY
# Test group_concat with column delimiter
# Will cause all columns save first to be duplicated
select day, group_concat(trim(string_col), trim(string_col))
from (select * from alltypesagg where id % 200 = day order by id limit 99999) a
group by day
---- RESULTS: VERIFY_IS_EQUAL_SORTED
3,'3203203403403603603803803'
5,'5205205405405605605805805'
8,'8208208408408608608808808'
4,'4204204404404604604804804'
9,'9209209409409609609809809'
2,'2202202402402602602802802'
6,'6206206406406606606806806'
10,'10210210410410610610810810'
7,'7207207407407607607807807'
1,'1201201401401601601801801'
---- TYPES
int, string
====
---- QUERY
# Test group_concat with multiple agg columns
select day, group_concat(string_col, '->'), group_concat(date_string_col)
from (select * from alltypesagg where id % 250 = day order by id limit 99999) a
group by day
---- RESULTS: VERIFY_IS_EQUAL_SORTED
3,'3->253->503->753','01/03/10, 01/03/10, 01/03/10, 01/03/10'
5,'5->255->505->755','01/05/10, 01/05/10, 01/05/10, 01/05/10'
8,'8->258->508->758','01/08/10, 01/08/10, 01/08/10, 01/08/10'
4,'4->254->504->754','01/04/10, 01/04/10, 01/04/10, 01/04/10'
9,'9->259->509->759','01/09/10, 01/09/10, 01/09/10, 01/09/10'
2,'2->252->502->752','01/02/10, 01/02/10, 01/02/10, 01/02/10'
6,'6->256->506->756','01/06/10, 01/06/10, 01/06/10, 01/06/10'
10,'10->260->510->760','01/10/10, 01/10/10, 01/10/10, 01/10/10'
7,'7->257->507->757','01/07/10, 01/07/10, 01/07/10, 01/07/10'
1,'1->251->501->751','01/01/10, 01/01/10, 01/01/10, 01/01/10'
---- TYPES
int, string, string
====
---- QUERY
# Test group_concat distinct with multiple agg columns
select day, group_concat(string_col, '->'), group_concat(date_string_col),
group_concat(distinct date_string_col)
from (select * from alltypesagg where id % 250 = day order by id limit 99999) a
group by day order by day
---- RESULTS: VERIFY_IS_EQUAL_SORTED
1,'1->251->501->751','01/01/10, 01/01/10, 01/01/10, 01/01/10','01/01/10'
2,'2->252->502->752','01/02/10, 01/02/10, 01/02/10, 01/02/10','01/02/10'
3,'3->253->503->753','01/03/10, 01/03/10, 01/03/10, 01/03/10','01/03/10'
4,'4->254->504->754','01/04/10, 01/04/10, 01/04/10, 01/04/10','01/04/10'
5,'5->255->505->755','01/05/10, 01/05/10, 01/05/10, 01/05/10','01/05/10'
6,'6->256->506->756','01/06/10, 01/06/10, 01/06/10, 01/06/10','01/06/10'
7,'7->257->507->757','01/07/10, 01/07/10, 01/07/10, 01/07/10','01/07/10'
8,'8->258->508->758','01/08/10, 01/08/10, 01/08/10, 01/08/10','01/08/10'
9,'9->259->509->759','01/09/10, 01/09/10, 01/09/10, 01/09/10','01/09/10'
10,'10->260->510->760','01/10/10, 01/10/10, 01/10/10, 01/10/10','01/10/10'
---- TYPES
int, string, string, string
====
---- QUERY
# Test group_concat with null result
select group_concat(string_col) from alltypesagg where string_col = NULL;
---- RESULTS
'NULL'
---- TYPES
string
====
---- QUERY
# Test group_concat distinct with null result
select group_concat(distinct string_col) from alltypesagg where string_col = NULL;
---- RESULTS
'NULL'
---- TYPES
string
====
---- QUERY
# Test group_concat with merge node
select group_concat(string_col) from alltypesagg where int_col = 1
---- RESULTS
'1, 1, 1, 1, 1, 1, 1, 1, 1, 1'
---- TYPES
STRING
====
---- QUERY
# Test merge phase uses correct separator (IMPALA-1110). The query needs to load data
# from multiple nodes in order to exercise this path, however the merge order is
# non-deterministic. So, aggregate a string literal to make the result deterministic.
select group_concat('abc', 'xy') from functional.alltypesagg where id % 1000 = day
---- RESULTS
'abcxyabcxyabcxyabcxyabcxyabcxyabcxyabcxyabcxyabc'
---- TYPES
string
====
---- QUERY
# Same as last query test, now adding the "distinct" clause
select group_concat(distinct 'abc', 'xy') from functional.alltypesagg
where id % 1000 = day
---- RESULTS
'abc'
---- TYPES
string
====
---- QUERY
# Test group_concat when separator varies by row.
select group_concat(cast(id as string), cast ((10 - id) as string))
from functional.alltypesagg
where id < 10 and day is not null
group by day
---- RESULTS
'0918273645546372819'
---- TYPES
string
====
---- QUERY
# Test correct removal of redundant group-by expressions (IMPALA-817)
select int_col * int_col, int_col + int_col
from functional.alltypesagg
group by int_col * int_col, int_col + int_col, int_col * int_col
having (int_col + int_col) < 5 order by 1 limit 10
---- RESULTS
1,2
4,4
---- TYPES
bigint,bigint
====
---- QUERY
# Test that binding predicates on an aggregation properly trigger materialization of
# slots in the agg tuple and the slots needed for evaluating the corresponding agg funcs
# (IMPALA-822).
select 1 from
(select count(bigint_col) c from functional.alltypesagg
having min(int_col) is not null) as t
where c is not null
---- RESULTS
1
---- TYPES
tinyint
====
---- QUERY
# Regression test for subexpr elimination in codegen. IMPALA-765
select count(tinyint_col), sum(tinyint_col * tinyint_col) from alltypesagg
---- RESULTS
9000,285000
---- TYPES
bigint,bigint
====
---- QUERY
# Regression test for subexpr elimination in codegen. IMPALA-765
select count(int_col), sum(int_col), avg(int_col) from alltypesagg where int_col is NULL
---- RESULTS
0,NULL,NULL
---- TYPES
bigint,bigint,double
====
---- QUERY
# Regression test for subexpr elimination in codegen. IMPALA-850
select id % 2, int_col > 1, id from alltypesagg where id < 2 group by 1,2,3
---- RESULTS
0,NULL,0
1,false,1
---- TYPES
int,boolean,int
====
---- QUERY
# Regression test for min/max of all negative values. IMPALA-869.
select min(cast(-1.0 as float)), max(cast(-1.0 as float)) from tinytable
---- RESULTS
-1,-1
---- TYPES
float,float
====
---- QUERY
# Regression test codegen with nulls and compound predicates. IMPALA-892.
select COUNT(int_col is not null AND bool_col) - COUNT(bool_col) FROM alltypesagg
---- RESULTS
0
---- TYPES
BIGINT
====
---- QUERY
select histogram(bool_col) from functional.alltypestiny;
---- RESULTS
'0, 0, 0, 0, 1, 1, 1, 1'
---- TYPES
STRING
====
---- QUERY
select histogram(tinyint_col) from functional.alltypestiny;
---- RESULTS
'0, 0, 0, 0, 1, 1, 1, 1'
---- TYPES
STRING
====
---- QUERY
select histogram(smallint_col) from functional.alltypestiny;
---- RESULTS
'0, 0, 0, 0, 1, 1, 1, 1'
---- TYPES
STRING
====
---- QUERY
select histogram(int_col) from functional.alltypestiny;
---- RESULTS
'0, 0, 0, 0, 1, 1, 1, 1'
---- TYPES
STRING
====
---- QUERY
select histogram(bigint_col) from functional.alltypestiny;
---- RESULTS
'0, 0, 0, 0, 10, 10, 10, 10'
---- TYPES
STRING
====
---- QUERY
select histogram(float_col) from functional.alltypestiny;
---- RESULTS
'0, 0, 0, 0, 1.1, 1.1, 1.1, 1.1'
---- TYPES
STRING
====
---- QUERY
select histogram(double_col) from functional.alltypestiny;
---- RESULTS
'0, 0, 0, 0, 10.1, 10.1, 10.1, 10.1'
---- TYPES
STRING
====
---- QUERY
select histogram(string_col) from functional.alltypestiny;
---- RESULTS
'0, 0, 0, 0, 1, 1, 1, 1'
---- TYPES
STRING
====
---- QUERY
select histogram(timestamp_col) from functional.alltypestiny;
---- RESULTS
'2009-01-01 00:00:00, 2009-01-01 00:01:00, 2009-02-01 00:00:00, 2009-02-01 00:01:00, 2009-03-01 00:00:00, 2009-03-01 00:01:00, 2009-04-01 00:00:00, 2009-04-01 00:01:00'
---- TYPES
STRING
====
---- QUERY
# IMPALA-4787: appx_median() on a medium sized dataset. This should excercise merge() with
# differently sized inputs in the Reservoir Sampling algorithm.
select
appx_median(bool_col),
appx_median(tinyint_col),
appx_median(smallint_col),
appx_median(int_col),
appx_median(float_col),
appx_median(double_col),
appx_median(string_col),
appx_median(timestamp_col)
from alltypes
---- RESULTS
true,5,5,5,5.5,50.5,'5',2010-01-01 00:00:00
---- TYPES
BOOLEAN, TINYINT, SMALLINT, INT, FLOAT, DOUBLE, STRING, TIMESTAMP
====
---- QUERY
# IMPALA-4787: appx_median on a large dataset. This requires several buffer resizes in the
# Reservoir Sampling algorithm.
select appx_median(l_returnflag)
from tpch.lineitem
where l_returnflag = "N"
---- RESULTS
'N'
---- TYPES
STRING
====
---- QUERY
# IMPALA-1419: Agg fn containing arithmetic expr on NULL fails
select count(null * 1) from functional.alltypes
---- RESULTS
0
---- TYPES
BIGINT
====
---- QUERY
# IMPALA-1898: ordinal in group/order by combined with explicit select-list alias
# that match columns in underlying table
select extract(timestamp_col, 'year') as timestamp_col,
extract(timestamp_col, 'month') as month,
sum(tinyint_col)
from functional.alltypes
group by 1, 2
order by 1, 2;
---- RESULTS
2009,1,1395
2009,2,1260
2009,3,1395
2009,4,1350
2009,5,1395
2009,6,1350
2009,7,1395
2009,8,1395
2009,9,1350
2009,10,1395
2009,11,1350
2009,12,1395
2010,1,1395
2010,2,1260
2010,3,1395
2010,4,1350
2010,5,1395
2010,6,1350
2010,7,1395
2010,8,1395
2010,9,1350
2010,10,1395
2010,11,1350
2010,12,1395
---- TYPES
INT,INT,BIGINT
====
---- QUERY
# IMPALA-2089: Tests correct elimination of redundant predicates.
# The equivalences between inline-view slots are enforced inside the inline-view plan.
# Equivalences between simple grouping slots (with SlotRef grouping exprs) are enforced
# at the scan, and equivalences between grouping slots with complex grouping exprs are
# enforced at the aggregation.
select t2.timestamp_col, t1.int_col_1
from
(select coalesce(t1.smallint_col, t1.month, t1.month) as int_col,
(count(t1.int_col)) <= (coalesce(t1.smallint_col, t1.month, t1.month)) as boolean_col,
(t1.bigint_col) + (t1.smallint_col) as int_col_1
from functional.alltypes t1
group by coalesce(t1.smallint_col, t1.month, t1.month), (t1.bigint_col) + (t1.smallint_col)
having (t1.bigint_col) + (t1.smallint_col) != (count(t1.bigint_col + t1.smallint_col))
) t1
inner join functional.alltypes t2
on (t2.month = t1.int_col and t2.month = t1.int_col_1 and t2.tinyint_col = t1.int_col)
where t2.int_col IN (t1.int_col_1, t1.int_col)
---- RESULTS
---- TYPES
TIMESTAMP,BIGINT
====