Files
impala/testdata/workloads/functional-query/queries/QueryTest/udf.test
Csaba Ringhofer 7ca11dfc7f IMPALA-9482: Support for BINARY columns
This patch adds support for BINARY columns for all table formats with
the exception of Kudu.

In Hive the main difference between STRING and BINARY is that STRING is
assumed to be UTF8 encoded, while BINARY can be any byte array.
Some other differences in Hive:
- BINARY can be only cast from/to STRING
- Only a small subset of built-in STRING functions support BINARY.
- In several file formats (e.g. text) BINARY is base64 encoded.
- No NDV is calculated during COMPUTE STATISTICS.

As Impala doesn't treat STRINGs as UTF8, BINARY and STRING become nearly
identical, especially from the backend's perspective. For this reason,
BINARY is implemented a bit differently compared to other types:
while the frontend treats STRING and BINARY as two separate types, most
of the backend uses PrimitiveType::TYPE_STRING for BINARY too, e.g.
in SlotDesc. Only the following parts of backend need to differentiate
between STRING and BINARY:
- table scanners
- table writers
- HS2/Beeswax service
These parts have access to column metadata, which allows to add special
handling for BINARY.

Only a very few builtins are allowed for BINARY at the moment:
- length
- min/max/count
- coalesce and similar "selector" functions
Other STRING functions can be only used by casting to STRING first.
Adding support for more of these functions is very easy, as simply
the BINARY type has to be "connected" to the already existing STRING
function's signature. Functions where the result depends on utf8_mode
need to ensure that with BINARY it always works as if utf8_mode=0 (for
example length() is mapped to bytes() as length count utf8 chars if
utf8_mode=1).

All kinds of UDFs (native, Hive legacy, Hive generic) support BINARY,
though in case of legacy Hive UDFs it is only supported if the argument
and return types are set explicitely to ensure backward compatibility.
See IMPALA-11340 for details.

The original plan was to behave as close to Hive as possible, but I
realized that Hive has more relaxed casting rules than Impala, which
led to STRING<->BINARY casts being necessary in more cases in Impala.
This was needed to disallow passing a BINARY to functions that expect
a STRING argument. An example for the difference is that in
INSERT ... VALUES () string literals need to be explicitly cast to
BINARY, while this is not needed in Hive.

Testing:
- Added functional.binary_tbl for all file formats (except Kudu)
  to test scanning.
- Removed functional.unsupported_types and related tests, as now
  Impala supports all (non-complex) types that Hive does.
- Added FE/EE tests mainly based on the ones added to the DATE type

Change-Id: I36861a9ca6c2047b0d76862507c86f7f153bc582
Reviewed-on: http://gerrit.cloudera.org:8080/16066
Reviewed-by: Quanlong Huang <huangquanlong@gmail.com>
Tested-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
2022-08-19 13:55:42 +00:00

585 lines
11 KiB
Plaintext

====
---- QUERY
# Test identity functions
select identity(true);
---- TYPES
boolean
---- RESULTS
true
====
---- QUERY
select identity(cast(10 as tinyint));
---- TYPES
tinyint
---- RESULTS
10
====
---- QUERY
select identity(cast(10 as smallint));
---- TYPES
smallint
---- RESULTS
10
====
---- QUERY
select identity(cast(10 as int));
---- TYPES
int
---- RESULTS
10
====
---- QUERY
select identity(cast(10 as bigint));
---- TYPES
bigint
---- RESULTS
10
====
---- QUERY
select identity(cast(10.0 as float));
---- TYPES
float
---- RESULTS
10
====
---- QUERY
select identity(cast(10.0 as double));
---- TYPES
double
---- RESULTS
10
====
---- QUERY
select identity("why hello there");
---- TYPES
string
---- RESULTS
'why hello there'
====
---- QUERY
select identity(cast("why hello there" as binary));
---- TYPES
binary
---- RESULTS
'why hello there'
====
---- QUERY
select identity(now());
---- TYPES
timestamp
====
---- QUERY
select identity(date '2019-02-20');
---- TYPES
date
---- RESULTS
2019-02-20
====
---- QUERY
select identity(cast(1 as decimal(9,0)));
---- TYPES
decimal
---- RESULTS
1
====
---- QUERY
select identity(cast(1 as decimal(18,1)));
---- TYPES
decimal
---- RESULTS
1.0
====
---- QUERY
select identity(cast(1 as decimal(38,10)));
---- TYPES
decimal
---- RESULTS
1.0000000000
====
---- QUERY
select identity(NULL);
---- TYPES
boolean
---- RESULTS
NULL
====
---- QUERY
select constant_timestamp();
---- TYPES
timestamp
---- RESULTS
2013-10-09 00:00:00.000000001
====
---- QUERY
select constant_date();
---- TYPES
date
---- RESULTS
2013-10-09
====
---- QUERY
# This provides coverage for ScalarExprEvaluator::GetConstValue(), which will interpret
# constant_timestamp(). This means that for both native and IR UDFs, constant_timestamp()
# needs to support evaluation from interpreted code.
select from_utc_timestamp(constant_timestamp(), "UTC");
---- TYPES
timestamp
---- RESULTS
2013-10-09 00:00:00.000000001
====
---- QUERY
# Test UDFs with different arguments
select all_types_fn("1", true, 2, 3, 4, 5, 6.0, 7.0, cast(8 as decimal(2,0)),
date '1970-01-10', cast("binary" as binary));
---- TYPES
int
---- RESULTS
52
====
---- QUERY
select no_args();
---- TYPES
string
---- RESULTS
'string'
====
---- QUERY
# Test UDFs over tables
select sum(identity(bigint_col)) from functional.alltypes
---- TYPES
bigint
---- RESULTS
328500
====
---- QUERY
select identity(a) from functional.tinytable;
---- TYPES
string
---- RESULTS
'aaaaaaa'
'ccccc'
'eeeeeeee'
====
---- QUERY
select identity(d1),
identity(cast(d3 as decimal(38,10))), identity(cast(d5 as decimal(38,10)))
from functional.decimal_tbl;
---- TYPES
decimal,decimal,decimal
---- RESULTS
1234,1.2345678900,12345.7890000000
2345,12.3456789000,3.1410000000
12345,123.4567890000,11.2200000000
12345,1234.5678900000,0.1000000000
132842,12345.6789000000,0.7788900000
====
---- QUERY
select identity(date_part), identity(date_col)
from functional.date_tbl;
---- TYPES
DATE, DATE
---- RESULTS
0001-01-01,0001-01-01
0001-01-01,0001-12-31
0001-01-01,0002-01-01
0001-01-01,1399-12-31
0001-01-01,2017-11-28
0001-01-01,9999-12-31
0001-01-01,NULL
1399-06-27,2017-11-28
1399-06-27,2018-12-31
1399-06-27,NULL
2017-11-27,0001-06-21
2017-11-27,0001-06-22
2017-11-27,0001-06-23
2017-11-27,0001-06-24
2017-11-27,0001-06-25
2017-11-27,0001-06-26
2017-11-27,0001-06-27
2017-11-27,0001-06-28
2017-11-27,0001-06-29
2017-11-27,2017-11-28
9999-12-31,9999-12-01
9999-12-31,9999-12-31
====
---- QUERY
select identity(bool_col), identity(tinyint_col),
identity(smallint_col), identity(int_col),
identity(bigint_col), identity(float_col),
identity(double_col), identity(string_col),
identity(timestamp_col), identity(year)
from functional.alltypestiny;
---- TYPES
boolean, tinyint, smallint, int, bigint, float, double, string, timestamp, int
---- RESULTS
true,0,0,0,0,0,0,'0',2009-02-01 00:00:00,2009
false,1,1,1,10,1.100000023841858,10.1,'1',2009-02-01 00:01:00,2009
true,0,0,0,0,0,0,'0',2009-04-01 00:00:00,2009
false,1,1,1,10,1.100000023841858,10.1,'1',2009-04-01 00:01:00,2009
true,0,0,0,0,0,0,'0',2009-01-01 00:00:00,2009
false,1,1,1,10,1.100000023841858,10.1,'1',2009-01-01 00:01:00,2009
true,0,0,0,0,0,0,'0',2009-03-01 00:00:00,2009
false,1,1,1,10,1.100000023841858,10.1,'1',2009-03-01 00:01:00,2009
====
---- QUERY
select sum(all_types_fn(
string_col, bool_col, tinyint_col, smallint_col,
int_col, bigint_col, float_col, double_col, cast(tinyint_col as decimal(2,0)),
cast(adddate('1970-01-01', tinyint_col) as date), cast(string_col as binary)))
from functional.alltypes;
---- TYPES
bigint
---- RESULTS
# Verify with 'select sum(length(string_col)) + sum(cast(bool_col as int))
# + sum(tinyint_col) + sum(smallint_col) + sum(int_col) + sum(bigint_col)
# + sum(cast(float_col as bigint)) + sum(cast(double_col as bigint)) + sum(tinyint_col)
# + sum(tinyint_col) + sum(bytes(string_col))
# from functional.alltypes;'
872350
====
---- QUERY
select no_args() from functional.alltypes limit 1;
---- TYPES
string
---- RESULTS
'string'
====
---- QUERY
# Chain UDFs/exprs together to test glue
select identity(no_args());
---- TYPES
string
---- RESULTS
'string'
====
---- QUERY
select identity(cast(identity(3.0) as bigint));
---- TYPES
bigint
---- RESULTS
3
====
---- QUERY
select count(*) from functional.alltypessmall having identity(count(*)) > 1
---- TYPES
bigint
---- RESULTS
100
====
---- QUERY
select count(identity(id)) from functional.alltypessmall
having identity(count(*)) > 1
---- TYPES
bigint
---- RESULTS
100
====
---- QUERY
select count(identity(id)) from functional.alltypessmall
group by identity(int_col)
having identity(count(*)) > 10
---- TYPES
bigint
---- RESULTS
12
12
12
12
12
====
---- QUERY
select identity(a.tinyint_col),
identity(b.id),
identity(a.string_col)
from functional.alltypesagg a join functional.alltypessmall b on
(identity(a.tinyint_col) = identity(b.id))
and identity(a.tinyint_col + b.tinyint_col) < 5
where identity(a.month) = identity(1)
and identity(a.day) = identity(1)
and identity(a.string_col) > identity('88')
and identity(b.bool_col) = identity(false)
order by identity(a.string_col)
limit 5
---- TYPES
tinyint, int, string
---- RESULTS
1,1,'881'
1,1,'891'
1,1,'901'
1,1,'91'
1,1,'911'
====
---- QUERY
select identity(int_col),
identity(min(identity(bool_col))),
identity(max(identity(tinyint_col))),
identity(max(identity(smallint_col))),
identity(max(identity(int_col))),
identity(max(identity(bigint_col))),
identity(max(identity(float_col))),
identity(max(identity(double_col))),
identity(max(identity(string_col))),
identity(max(identity(timestamp_col)))
from functional.alltypesagg
where identity(identity(tinyint_col) > identity(1))
group by identity(int_col)
having identity(identity(int_col) > identity(998))
---- TYPES
int,boolean,tinyint,smallint,int,bigint,float,double,string,timestamp
---- RESULTS
999,false,9,99,999,9990,1098.900024414062,10089.9,'999',2010-01-10 18:02:05.100000000
====
---- QUERY
select identity(year),
identity(min(identity(month))),
identity(min(string_col)),
identity(max(timestamp_col))
from functional.alltypesagg group by identity(year)
having identity(identity(year) = identity(2010))
---- TYPES
int,int,string,timestamp
---- RESULTS
2010,1,'0',2010-01-10 18:02:05.100000000
====
---- QUERY
select min(identity(int_col)) from functional.alltypesagg where int_col is null;
---- TYPES
int
---- RESULTS
NULL
====
---- QUERY
select var_sum(NULL, NULL, NULL)
---- TYPES
int
---- RESULTS
NULL
====
---- QUERY
select var_and(true, false, true)
---- TYPES
boolean
---- RESULTS
false
====
---- QUERY
select var_and(true, true, true, true, true)
---- TYPES
boolean
---- RESULTS
true
====
---- QUERY
select var_sum(1, 2, 3, 4, 5, 6)
---- TYPES
int
---- RESULTS
21
====
---- QUERY
select var_sum(1.0, 2.0, 3.0)
---- TYPES
decimal
---- RESULTS
6.00
====
---- QUERY
select var_sum("Hello", "World", "Foo", "Bar")
---- TYPES
int
---- RESULTS
16
====
---- QUERY
select var_sum(cast(1 as decimal(4,2)), cast(2 as decimal(4,2)), cast(3 as decimal(4,2)));
---- TYPES
decimal
---- RESULTS
6.00
====
---- QUERY
# More complicated arguments
select var_sum(
cast(1 as decimal(4,2)), cast(2 as decimal(4,2)),
cast(3 as decimal(3,2)) + cast("1.1" as decimal(3,2)));
---- TYPES
decimal
---- RESULTS
7.10
====
---- QUERY
select tinyint_col, int_col, var_sum(tinyint_col, int_col)
from functional.alltypestiny
---- TYPES
tinyint, int, int
---- RESULTS
0,0,0
1,1,2
0,0,0
1,1,2
0,0,0
1,1,2
0,0,0
1,1,2
====
---- QUERY
select var_sum_multiply(NULL, 1, 2)
---- TYPES
double
---- RESULTS
NULL
====
---- QUERY
select var_sum_multiply(1.0, 1, 2, NULL, 3)
---- TYPES
double
---- RESULTS
6
====
---- QUERY
select var_sum_multiply(5.0, 1, 2, 3, 4, 5, 6)
---- TYPES
double
---- RESULTS
105
====
---- QUERY
select var_sum_multiply2(5.0, 1, 2, 3, 4, 5, 6)
---- TYPES
double
---- RESULTS
105
====
---- QUERY
select to_lower("HELLO")
---- TYPES
string
---- RESULTS
'hello'
====
---- QUERY
select to_upper("foobar")
---- TYPES
string
---- RESULTS
'FOOBAR'
====
---- QUERY
select tinyint_col, int_col, var_sum_multiply(2, tinyint_col, int_col)
from functional.alltypestiny
---- TYPES
tinyint, int, double
---- RESULTS
0,0,0
1,1,4
0,0,0
1,1,4
0,0,0
1,1,4
0,0,0
1,1,4
====
---- QUERY
# Test UDFs that are evaluated in the planner (doesn't take cols as input)
# and returns a string.
select count(*) from functional.alltypessmall where No_Args() = 'string'
---- TYPES
BIGINT
---- RESULTS
100
====
---- QUERY
select count(*) from functional.alltypessmall where No_Args() != 'string'
---- TYPES
BIGINT
---- RESULTS
0
====
---- QUERY
select validate_arg_type("dummy")
---- TYPES
BOOLEAN
---- RESULTS
true
====
---- QUERY
select constant_arg(1), constant_arg(int_col) from functional.alltypestiny limit 1;
---- TYPES
int,int
---- RESULTS
1,NULL
====
---- QUERY
# Test applying a UDF on a partition column predicate (IMPALA-887)
select * from functional.alltypestiny where identity(year) = 2009 and identity(month) = 1;
---- RESULTS
0,true,0,0,0,0,0,0,'01/01/09','0',2009-01-01 00:00:00,2009,1
1,false,1,1,1,10,1.100000023841858,10.1,'01/01/09','1',2009-01-01 00:01:00,2009,1
---- TYPES
INT, BOOLEAN, TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, STRING, STRING, TIMESTAMP, INT, INT
====
---- QUERY
select mem_test(100);
---- TYPES
bigint
---- RESULTS
100
====
---- QUERY
# Make sure rand() is non-constant
select constant_arg(cast(rand() as int));
---- TYPES
INT
---- RESULTS
NULL
====
---- QUERY
select four_args(1,2,3,4);
---- TYPES
INT
---- RESULTS
10
====
---- QUERY
select five_args(1,2,3,4,5);
---- TYPES
INT
---- RESULTS
15
====
---- QUERY
select six_args(1,2,3,4,5,6);
---- TYPES
INT
---- RESULTS
21
====
---- QUERY
select seven_args(1,2,3,4,5,6,7);
---- TYPES
INT
---- RESULTS
28
====
---- QUERY
select eight_args(1,2,3,4,5,6,7,8);
---- TYPES
INT
---- RESULTS
36
====
---- QUERY
select twenty_args(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20);
---- TYPES
INT
---- RESULTS
210
====
---- QUERY
select pow(3,2), xpow(3,2);
---- TYPES
DOUBLE, DOUBLE
---- RESULTS
9,9
====