mirror of
https://github.com/apache/impala.git
synced 2025-12-30 12:02:10 -05:00
For files that have a Cloudera copyright (and no other copyright notice), make changes to follow the ASF source file header policy here: http://www.apache.org/legal/src-headers.html#headers Specifically: 1) Remove the Cloudera copyright. 2) Modify NOTICE.txt according to http://www.apache.org/legal/src-headers.html#notice to follow that format and add a line for Cloudera. 3) Replace or add the existing ASF license text with the one given on the website. Much of this change was automatically generated via: git grep -li 'Copyright.*Cloudera' > modified_files.txt cat modified_files.txt | xargs perl -n -i -e 'print unless m#Copyright.*Cloudera#i;' cat modified_files_txt | xargs fix_apache_license.py [1] Some manual fixups were performed following those steps, especially when license text was completely missing from the file. [1] https://gist.github.com/anonymous/ff71292094362fc5c594 with minor modification to ORIG_LICENSE to match Impala's license text. Change-Id: I2e0bd8420945b953e1b806041bea4d72a3943d86 Reviewed-on: http://gerrit.cloudera.org:8080/3779 Reviewed-by: Dan Hecht <dhecht@cloudera.com> Tested-by: Internal Jenkins
155 lines
6.1 KiB
Python
155 lines
6.1 KiB
Python
# Licensed to the Apache Software Foundation (ASF) under one
|
|
# or more contributor license agreements. See the NOTICE file
|
|
# distributed with this work for additional information
|
|
# regarding copyright ownership. The ASF licenses this file
|
|
# to you under the Apache License, Version 2.0 (the
|
|
# "License"); you may not use this file except in compliance
|
|
# with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
# A TextMatrix is used to generate a set of TestVectors. The vectors that are generated
|
|
# are based on one or more TestDimensions inputs. These lists define the set of
|
|
# values that are interesting to a test. For example, for file_format these might be
|
|
# 'seq', 'text', etc
|
|
#
|
|
# The TestMatrix is then used to generate a set of TestVectors. Each TestVector contains a
|
|
# single value from each of the input TestDimensions. An example:
|
|
#
|
|
# TestMatrix.add_dimension('file_format', 'seq', 'text')
|
|
# TestMatrix.add_dimension('agg_func', 'min', 'max', 'sum')
|
|
# TestMatrix.add_dimension('col_type', 'int', 'bool')
|
|
# test_vectors = TestMatrix.generate_test_vectors(...)
|
|
#
|
|
# Would return a collection of TestVectors, with each one containing a combination of
|
|
# file_format, agg_func, and col_type:
|
|
# seq, min, int
|
|
# text, max, bool
|
|
# ...
|
|
#
|
|
# A TestVector is an object itself, and the 'get_value' function is used to extract the
|
|
# actual value from the TestVector for this particular combination:
|
|
# test_vector = test_vectors[0]
|
|
# print test_vector.get_value('file_format')
|
|
#
|
|
# The combinations of TestVectors generated can be done in two ways: pairwise and
|
|
# exhaustive. Pairwise provides a way to get good coverage and reduce the total number
|
|
# of combinations generated where exhaustive will generate all valid combinations.
|
|
#
|
|
# Finally, the TestMatrix also provides a way to add constraints to the vectors that
|
|
# are generated. This is useful to filter out invalid combinations. These can be added
|
|
# before calling 'generate_test_vectors'. The constraint is a function that
|
|
# accepts a TestVector object and returns true if the vector is valid, false otherwise.
|
|
# For example, if we want to make sure 'bool' columns are not used with 'sum':
|
|
#
|
|
# TestMatrix.add_constraint(lambda v:\
|
|
# not (v.get_value('col_type') == 'bool and v.get_value('agg_func') == 'sum'))
|
|
#
|
|
# Additional examples of usage can be found within the test suites.
|
|
|
|
from itertools import product
|
|
|
|
# A list of test dimension values.
|
|
class TestDimension(list):
|
|
def __init__(self, name, *args):
|
|
self.name = name
|
|
self.extend([TestVector.Value(name, arg) for arg in args])
|
|
|
|
|
|
# A test vector that passed to test method. The TestVector can be used to extract values
|
|
# for the specified dimension(s)
|
|
class TestVector(object):
|
|
def __init__(self, vector_values):
|
|
self.vector_values = vector_values
|
|
|
|
def get_value(self, name):
|
|
return next(vector_value for vector_value in self.vector_values\
|
|
if vector_value.name == name).value
|
|
|
|
def __str__(self):
|
|
return ' | '.join(['%s' % vector_value for vector_value in self.vector_values])
|
|
|
|
# Each value in a test vector is wrapped in the Value object. This wrapping is
|
|
# done internally so this object should never need to be created by the user.
|
|
class Value(object):
|
|
def __init__(self, name, value):
|
|
self.name = name
|
|
self.value = value
|
|
|
|
def __str__(self):
|
|
return '%s: %s' % (self.name, self.value)
|
|
|
|
|
|
# Matrix -> Collection of vectors
|
|
# Vector -> Call to get specific values
|
|
class TestMatrix(object):
|
|
def __init__(self, *args):
|
|
self.dimensions = dict((arg.name, arg) for arg in args)
|
|
self.constraint_list = list()
|
|
|
|
def add_dimension(self, dimension):
|
|
self.dimensions[dimension.name] = dimension
|
|
|
|
def clear(self):
|
|
self.dimensions.clear()
|
|
|
|
def clear_dimension(self, dimension_name):
|
|
del self.dimensions[dimension_name]
|
|
|
|
def has_dimension(self, dimension_name):
|
|
return self.dimensions.has_key(dimension_name)
|
|
|
|
def generate_test_vectors(self, exploration_strategy):
|
|
if not self.dimensions:
|
|
return list()
|
|
# TODO: Check valid exploration strategies, provide more options for exploration
|
|
if exploration_strategy == 'exhaustive':
|
|
return self.__generate_exhaustive_combinations()
|
|
elif exploration_strategy in ['core', 'pairwise']:
|
|
return self.__generate_pairwise_combinations()
|
|
else:
|
|
raise ValueError, 'Unknown exploration strategy: %s' % exploration_strategy
|
|
|
|
def __generate_exhaustive_combinations(self):
|
|
return [TestVector(vec) for vec in product(*self.__extract_vector_values()) if\
|
|
self.is_valid(vec)]
|
|
|
|
def __generate_pairwise_combinations(self):
|
|
import metacomm.combinatorics.all_pairs2
|
|
all_pairs = metacomm.combinatorics.all_pairs2.all_pairs2
|
|
|
|
# Pairwise fails if the number of inputs == 1. Use exhaustive in this case the
|
|
# results will be the same.
|
|
if len(self.dimensions) == 1:
|
|
return self.__generate_exhaustive_combinations()
|
|
return [TestVector(vec) for vec in all_pairs(self.__extract_vector_values(),
|
|
filter_func = self.is_valid)]
|
|
|
|
def add_constraint(self, constraint_func):
|
|
self.constraint_list.append(constraint_func)
|
|
|
|
def clear_constraints(self):
|
|
self.constraint_list = list()
|
|
|
|
def __extract_vector_values(self):
|
|
# The data is stored as a tuple of (name, [val1, val2, val3]). So extract the actual
|
|
# values from this
|
|
return [v[1] for v in self.dimensions.items()]
|
|
|
|
def is_valid(self, vector):
|
|
for constraint in self.constraint_list:
|
|
if (isinstance(vector, list) or isinstance(vector, tuple)) and\
|
|
len(vector) == len(self.dimensions):
|
|
valid = constraint(TestVector(vector))
|
|
if valid:
|
|
continue
|
|
return False
|
|
return True
|