mirror of
https://github.com/apache/impala.git
synced 2025-12-30 03:01:44 -05:00
Dataload currently executes bin/load-data.py for TPC-H, TPC-DS, and functional-query concurrently. One of the final steps for bin/load-data.py is to run a global "invalidate metadata". Global "invalidate metadata" commands are known to cause problem on concurrent systems. See IMPALA-5087. For dataload, if TPC-H executes "invalidate metadata" while TPC-DS is still creating tables and adding partitions, the TPC-DS executor might erroneously believe that a table does not exist. This changes dataload to invalidate metadata at an individual table level rather than globally. This prevents the concurrency issue. This also changes the names of some of the intermediate SQL files generated by generate-schema-statements.py and consumed by load-data.py to make them less confusing. Change-Id: Ibc3a6d8a674a0bf6b02069bfe8a5e12034335b1f Reviewed-on: http://gerrit.cloudera.org:8080/9009 Reviewed-by: Joe McDonnell <joemcdonnell@cloudera.com> Tested-by: Impala Public Jenkins
349 lines
16 KiB
Python
Executable File
349 lines
16 KiB
Python
Executable File
#!/usr/bin/env impala-python
|
|
#
|
|
# Licensed to the Apache Software Foundation (ASF) under one
|
|
# or more contributor license agreements. See the NOTICE file
|
|
# distributed with this work for additional information
|
|
# regarding copyright ownership. The ASF licenses this file
|
|
# to you under the Apache License, Version 2.0 (the
|
|
# "License"); you may not use this file except in compliance
|
|
# with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
#
|
|
# This script is used to load the proper datasets for the specified workloads. It loads
|
|
# all data via Hive except for parquet data which needs to be loaded via Impala.
|
|
# Most ddl commands are executed by Impala.
|
|
import collections
|
|
import getpass
|
|
import logging
|
|
import os
|
|
import re
|
|
import sqlparse
|
|
import subprocess
|
|
import sys
|
|
import tempfile
|
|
import time
|
|
import traceback
|
|
|
|
from itertools import product
|
|
from optparse import OptionParser
|
|
from Queue import Queue
|
|
from tests.beeswax.impala_beeswax import *
|
|
from threading import Thread
|
|
|
|
logging.basicConfig()
|
|
LOG = logging.getLogger('load-data.py')
|
|
LOG.setLevel(logging.DEBUG)
|
|
|
|
parser = OptionParser()
|
|
parser.add_option("-e", "--exploration_strategy", dest="exploration_strategy",
|
|
default="core",
|
|
help="The exploration strategy for schema gen: 'core', "\
|
|
"'pairwise', or 'exhaustive'")
|
|
parser.add_option("--hive_warehouse_dir", dest="hive_warehouse_dir",
|
|
default="/test-warehouse",
|
|
help="The HDFS path to the base Hive test warehouse directory")
|
|
parser.add_option("-w", "--workloads", dest="workloads",
|
|
help="Comma-separated list of workloads to load data for. If 'all' is "\
|
|
"specified then data for all workloads is loaded.")
|
|
parser.add_option("-s", "--scale_factor", dest="scale_factor", default="",
|
|
help="An optional scale factor to generate the schema for")
|
|
parser.add_option("-f", "--force_reload", dest="force_reload", action="store_true",
|
|
default=False, help='Skips HDFS exists check and reloads all tables')
|
|
parser.add_option("--impalad", dest="impalad", default="localhost:21000",
|
|
help="Impala daemon to connect to")
|
|
parser.add_option("--hive_hs2_hostport", dest="hive_hs2_hostport",
|
|
default="localhost:11050",
|
|
help="HS2 host:Port to issue Hive queries against using beeline")
|
|
parser.add_option("--table_names", dest="table_names", default=None,
|
|
help="Only load the specified tables - specified as a comma-seperated "\
|
|
"list of base table names")
|
|
parser.add_option("--table_formats", dest="table_formats", default=None,
|
|
help="Override the test vectors and load using the specified table "\
|
|
"formats. Ex. --table_formats=seq/snap/block,text/none")
|
|
parser.add_option("--hdfs_namenode", dest="hdfs_namenode", default="localhost:20500",
|
|
help="HDFS name node for Avro schema URLs, default localhost:20500")
|
|
parser.add_option("--workload_dir", dest="workload_dir",
|
|
default=os.environ['IMPALA_WORKLOAD_DIR'],
|
|
help="Directory that contains Impala workloads")
|
|
parser.add_option("--dataset_dir", dest="dataset_dir",
|
|
default=os.environ['IMPALA_DATASET_DIR'],
|
|
help="Directory that contains Impala datasets")
|
|
parser.add_option("--use_kerberos", action="store_true", default=False,
|
|
help="Load data on a kerberized cluster.")
|
|
parser.add_option("--principal", default=None, dest="principal",
|
|
help="Kerberos service principal, required if --use_kerberos is set")
|
|
|
|
options, args = parser.parse_args()
|
|
|
|
SQL_OUTPUT_DIR = os.environ['IMPALA_DATA_LOADING_SQL_DIR']
|
|
WORKLOAD_DIR = options.workload_dir
|
|
DATASET_DIR = options.dataset_dir
|
|
TESTDATA_BIN_DIR = os.path.join(os.environ['IMPALA_HOME'], 'testdata/bin')
|
|
AVRO_SCHEMA_DIR = "avro_schemas"
|
|
|
|
GENERATE_SCHEMA_CMD = "generate-schema-statements.py --exploration_strategy=%s "\
|
|
"--workload=%s --scale_factor=%s --verbose"
|
|
# Load data using Hive's beeline because the Hive shell has regressed (HIVE-5515).
|
|
# The Hive shell is stateful, meaning that certain series of actions lead to problems.
|
|
# Examples of problems due to the statefullness of the Hive shell:
|
|
# - Creating an HBase table changes the replication factor to 1 for subsequent LOADs.
|
|
# - INSERTs into an HBase table fail if they are the first stmt executed in a session.
|
|
# However, beeline itself also has bugs. For example, inserting a NULL literal into
|
|
# a string-typed column leads to an NPE. We work around these problems by using LOAD from
|
|
# a datafile instead of doing INSERTs.
|
|
HIVE_CMD = os.path.join(os.environ['HIVE_HOME'], 'bin/beeline')
|
|
|
|
hive_auth = "auth=none"
|
|
if options.use_kerberos:
|
|
if not options.principal:
|
|
print "--principal is required when --use_kerberos is specified"
|
|
exit(1)
|
|
hive_auth = "principal=" + options.principal
|
|
|
|
HIVE_ARGS = '-n %s -u "jdbc:hive2://%s/default;%s" --verbose=true'\
|
|
% (getpass.getuser(), options.hive_hs2_hostport, hive_auth)
|
|
|
|
# When HiveServer2 is configured to use "local" mode (i.e., MR jobs are run
|
|
# in-process rather than on YARN), Hadoop's LocalDistributedCacheManager has a
|
|
# race, wherein it tires to localize jars into
|
|
# /tmp/hadoop-$USER/mapred/local/<millis>. Two simultaneous Hive queries
|
|
# against HS2 can conflict here. Weirdly LocalJobRunner handles a similar issue
|
|
# (with the staging directory) by appending a random number. To over come this,
|
|
# in the case that HS2 is on the local machine (which we conflate with also
|
|
# running MR jobs locally), we move the temporary directory into a unique
|
|
# directory via configuration. This block can be removed when
|
|
# https://issues.apache.org/jira/browse/MAPREDUCE-6441 is resolved.
|
|
if options.hive_hs2_hostport.startswith("localhost:"):
|
|
HIVE_ARGS += ' --hiveconf "mapreduce.cluster.local.dir=%s"' % (tempfile.mkdtemp(
|
|
prefix="impala-data-load-"))
|
|
|
|
HADOOP_CMD = os.path.join(os.environ['HADOOP_HOME'], 'bin/hadoop')
|
|
|
|
def available_workloads(workload_dir):
|
|
return [subdir for subdir in os.listdir(workload_dir)
|
|
if os.path.isdir(os.path.join(workload_dir, subdir))]
|
|
|
|
def validate_workloads(all_workloads, workloads):
|
|
for workload in workloads:
|
|
if workload not in all_workloads:
|
|
print 'Workload \'%s\' not found in workload directory' % workload
|
|
print 'Available workloads: ' + ', '.join(all_workloads)
|
|
sys.exit(1)
|
|
|
|
def exec_cmd(cmd, error_msg, exit_on_error=True):
|
|
ret_val = -1
|
|
try:
|
|
ret_val = subprocess.call(cmd, shell=True)
|
|
except Exception as e:
|
|
error_msg = "%s: %s" % (error_msg, str(e))
|
|
finally:
|
|
if ret_val != 0:
|
|
print error_msg
|
|
if exit_on_error: sys.exit(ret_val)
|
|
return ret_val
|
|
|
|
def exec_hive_query_from_file(file_name):
|
|
if not os.path.exists(file_name): return
|
|
hive_cmd = "%s %s -f %s" % (HIVE_CMD, HIVE_ARGS, file_name)
|
|
print 'Executing Hive Command: %s' % hive_cmd
|
|
exec_cmd(hive_cmd, 'Error executing file from Hive: ' + file_name)
|
|
|
|
def exec_hbase_query_from_file(file_name):
|
|
if not os.path.exists(file_name): return
|
|
hbase_cmd = "hbase shell %s" % file_name
|
|
print 'Executing HBase Command: %s' % hbase_cmd
|
|
exec_cmd(hbase_cmd, 'Error executing hbase create commands')
|
|
|
|
# KERBEROS TODO: fails when kerberized and impalad principal isn't "impala"
|
|
def exec_impala_query_from_file(file_name):
|
|
"""Execute each query in an Impala query file individually"""
|
|
is_success = True
|
|
impala_client = ImpalaBeeswaxClient(options.impalad, use_kerberos=options.use_kerberos)
|
|
try:
|
|
impala_client.connect()
|
|
with open(file_name, 'r+') as query_file:
|
|
queries = sqlparse.split(query_file.read())
|
|
for query in queries:
|
|
query = sqlparse.format(query.rstrip(';'), strip_comments=True)
|
|
print '(%s):\n%s\n' % (file_name, query.strip())
|
|
if query.strip() != "":
|
|
result = impala_client.execute(query)
|
|
except Exception as e:
|
|
print "Data Loading from Impala failed with error: %s" % str(e)
|
|
traceback.print_exc()
|
|
is_success = False
|
|
finally:
|
|
impala_client.close_connection()
|
|
return is_success
|
|
|
|
def exec_bash_script(file_name):
|
|
bash_cmd = "bash %s" % file_name
|
|
print 'Executing Bash Command: ' + bash_cmd
|
|
exec_cmd(bash_cmd, 'Error bash script: ' + file_name)
|
|
|
|
def run_dataset_preload(dataset):
|
|
"""Execute a preload script if present in dataset directory. E.g. to generate data
|
|
before loading"""
|
|
dataset_preload_script = os.path.join(DATASET_DIR, dataset, "preload")
|
|
if os.path.exists(dataset_preload_script):
|
|
print("Running preload script for " + dataset)
|
|
if options.scale_factor > 1:
|
|
dataset_preload_script += " " + str(options.scale_factor)
|
|
exec_cmd(dataset_preload_script, "Error executing preload script for " + dataset,
|
|
exit_on_error=True)
|
|
|
|
def generate_schema_statements(workload):
|
|
generate_cmd = GENERATE_SCHEMA_CMD % (options.exploration_strategy, workload,
|
|
options.scale_factor)
|
|
if options.table_names:
|
|
generate_cmd += " --table_names=%s" % options.table_names
|
|
if options.force_reload:
|
|
generate_cmd += " --force_reload"
|
|
if options.table_formats:
|
|
generate_cmd += " --table_formats=%s" % options.table_formats
|
|
if options.hive_warehouse_dir is not None:
|
|
generate_cmd += " --hive_warehouse_dir=%s" % options.hive_warehouse_dir
|
|
if options.hdfs_namenode is not None:
|
|
generate_cmd += " --hdfs_namenode=%s" % options.hdfs_namenode
|
|
generate_cmd += " --backend=%s" % options.impalad
|
|
print 'Executing Generate Schema Command: ' + generate_cmd
|
|
schema_cmd = os.path.join(TESTDATA_BIN_DIR, generate_cmd)
|
|
error_msg = 'Error generating schema statements for workload: ' + workload
|
|
exec_cmd(schema_cmd, error_msg)
|
|
|
|
def get_dataset_for_workload(workload):
|
|
dimension_file_name = os.path.join(WORKLOAD_DIR, workload,
|
|
'%s_dimensions.csv' % workload)
|
|
if not os.path.isfile(dimension_file_name):
|
|
print 'Dimension file not found: ' + dimension_file_name
|
|
sys.exit(1)
|
|
with open(dimension_file_name, 'rb') as input_file:
|
|
match = re.search('dataset:\s*([\w\-\.]+)', input_file.read())
|
|
if match:
|
|
return match.group(1)
|
|
else:
|
|
print 'Dimension file does not contain dataset for workload \'%s\'' % (workload)
|
|
sys.exit(1)
|
|
|
|
def copy_avro_schemas_to_hdfs(schemas_dir):
|
|
"""Recursively copies all of schemas_dir to the test warehouse."""
|
|
if not os.path.exists(schemas_dir):
|
|
print 'Avro schema dir (%s) does not exist. Skipping copy to HDFS.' % schemas_dir
|
|
return
|
|
|
|
exec_hadoop_fs_cmd("-mkdir -p " + options.hive_warehouse_dir)
|
|
exec_hadoop_fs_cmd("-put -f %s %s/" % (schemas_dir, options.hive_warehouse_dir))
|
|
|
|
def exec_hadoop_fs_cmd(args, exit_on_error=True):
|
|
cmd = "%s fs %s" % (HADOOP_CMD, args)
|
|
print "Executing Hadoop command: " + cmd
|
|
exec_cmd(cmd, "Error executing Hadoop command, exiting",
|
|
exit_on_error=exit_on_error)
|
|
|
|
def exec_impala_query_from_file_parallel(query_files):
|
|
# Get the name of the query file that loads the base tables, if it exists.
|
|
# TODO: Find a better way to detect the file that loads the base tables.
|
|
create_base_table_file = next((q for q in query_files if 'text' in q), None)
|
|
if create_base_table_file:
|
|
is_success = exec_impala_query_from_file(create_base_table_file)
|
|
query_files.remove(create_base_table_file)
|
|
# If loading the base tables failed, exit with a non zero error code.
|
|
if not is_success: sys.exit(1)
|
|
if not query_files: return
|
|
threads = []
|
|
result_queue = Queue()
|
|
for query_file in query_files:
|
|
thread = Thread(target=lambda x: result_queue.put(exec_impala_query_from_file(x)),
|
|
args=[query_file])
|
|
thread.daemon = True
|
|
threads.append(thread)
|
|
thread.start()
|
|
# Keep looping until the number of results retrieved is the same as the number of
|
|
# threads spawned, or until a data loading query fails. result_queue.get() will
|
|
# block until a result is available in the queue.
|
|
num_fetched_results = 0
|
|
while num_fetched_results < len(threads):
|
|
success = result_queue.get()
|
|
num_fetched_results += 1
|
|
if not success: sys.exit(1)
|
|
# There is a small window where a thread may still be alive even if all the threads have
|
|
# finished putting their results in the queue.
|
|
for thread in threads: thread.join()
|
|
|
|
if __name__ == "__main__":
|
|
# Having the actual command line at the top of each data-load-* log can help
|
|
# when debugging dataload issues.
|
|
#
|
|
LOG.debug(' '.join(sys.argv))
|
|
|
|
all_workloads = available_workloads(WORKLOAD_DIR)
|
|
workloads = []
|
|
if options.workloads is None:
|
|
print "At least one workload name must be specified."
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
elif options.workloads == 'all':
|
|
print 'Loading data for all workloads.'
|
|
workloads = all_workloads
|
|
else:
|
|
workloads = options.workloads.split(",")
|
|
validate_workloads(all_workloads, workloads)
|
|
|
|
print 'Starting data load for the following workloads: ' + ', '.join(workloads)
|
|
|
|
loading_time_map = collections.defaultdict(float)
|
|
for workload in workloads:
|
|
start_time = time.time()
|
|
dataset = get_dataset_for_workload(workload)
|
|
run_dataset_preload(dataset)
|
|
generate_schema_statements(workload)
|
|
sql_dir = os.path.join(SQL_OUTPUT_DIR, dataset)
|
|
assert os.path.isdir(sql_dir),\
|
|
("Could not find the generated SQL files for loading dataset '%s'.\
|
|
\nExpected to find the SQL files in: %s" % (dataset, sql_dir))
|
|
os.chdir(os.path.join(SQL_OUTPUT_DIR, dataset))
|
|
copy_avro_schemas_to_hdfs(AVRO_SCHEMA_DIR)
|
|
dataset_dir_contents = os.listdir(os.getcwd())
|
|
load_file_substr = "%s-%s" % (workload, options.exploration_strategy)
|
|
# Data loading with Impala is done in parallel, each file format has a separate query
|
|
# file.
|
|
create_filename = 'create-%s-impala-generated' % load_file_substr
|
|
load_filename = 'load-%s-impala-generated' % load_file_substr
|
|
impala_create_files = [f for f in dataset_dir_contents if create_filename in f]
|
|
impala_load_files = [f for f in dataset_dir_contents if load_filename in f]
|
|
|
|
# Execute the data loading scripts.
|
|
# Creating tables in Impala has no dependencies, so we execute them first.
|
|
# HBase table inserts are done via hive, so the hbase tables need to be created before
|
|
# running the hive script. Some of the Impala inserts depend on hive tables,
|
|
# so they're done at the end. Finally, the Hbase Tables that have been filled with data
|
|
# need to be flushed.
|
|
exec_impala_query_from_file_parallel(impala_create_files)
|
|
exec_hbase_query_from_file('load-%s-hbase-generated.create' % load_file_substr)
|
|
exec_hive_query_from_file('load-%s-hive-generated.sql' % load_file_substr)
|
|
exec_hbase_query_from_file('post-load-%s-hbase-generated.sql' % load_file_substr)
|
|
|
|
# Invalidate so that Impala sees the loads done by Hive before loading Parquet/Kudu
|
|
# Note: This only invalidates tables for this workload.
|
|
invalidate_sql_file = 'invalidate-{0}-impala-generated.sql'.format(load_file_substr)
|
|
if impala_load_files: exec_impala_query_from_file(invalidate_sql_file)
|
|
exec_impala_query_from_file_parallel(impala_load_files)
|
|
# Final invalidate for this workload
|
|
exec_impala_query_from_file(invalidate_sql_file)
|
|
loading_time_map[workload] = time.time() - start_time
|
|
|
|
total_time = 0.0
|
|
for workload, load_time in loading_time_map.iteritems():
|
|
total_time += load_time
|
|
print 'Data loading for workload \'%s\' completed in: %.2fs'\
|
|
% (workload, load_time)
|
|
print 'Total load time: %.2fs\n' % total_time
|