Files
impala/be/src/gutil/fixedarray.h
Martin Grund 81f247b171 Optional Impala Toolchain
This patch allows to optionally enable the new Impala binary
toolchain. For now there are now major version differences in the
toolchain dependencies and what is currently kept in thirdparty.

To enable the toolchain, export the variable IMPALA_TOOLCHAIN to the
folder where the binaries are available.

In addition this patch moves gutil from the thirdparty directory into
the source tree of be/src to allow easy propagation of compiler and
linker flags. Furthermore, the thrift-cpp target was added as a
dependency to all targets that require the generated thrift sources to
be available before the build is started.

What is the new toolchain: The goal of the toolchain is to homogenize
the build environment and to make sure that Impala is build nearly
identical on every platform. To achieve this, we limit the flexibility
of using the systems host libraries and rather rely on a set of custom
produced binaries including the necessary compiler.

Change-Id: If2dac920520e4a18be2a9a75b3184a5bd97a065b
Reviewed-on: http://gerrit.cloudera.org:8080/427
Reviewed-by: Adar Dembo <adar@cloudera.com>
Tested-by: Internal Jenkins
Reviewed-by: Martin Grund <mgrund@cloudera.com>
2015-06-13 03:11:44 +00:00

175 lines
5.7 KiB
C++

// Copyright 2005 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// ---
//
#ifndef UTIL_GTL_FIXEDARRAY_H__
#define UTIL_GTL_FIXEDARRAY_H__
#include <stddef.h>
#include <glog/logging.h>
#include "gutil/logging-inl.h"
#include "gutil/macros.h"
#include "gutil/manual_constructor.h"
// A FixedArray<T> represents a non-resizable array of T where the
// length of the array does not need to be a compile time constant.
//
// FixedArray allocates small arrays inline, and large arrays on
// the heap. It is a good replacement for non-standard and deprecated
// uses of alloca() and variable length arrays (a GCC extension).
//
// FixedArray keeps performance fast for small arrays, because it
// avoids heap operations. It also helps reduce the chances of
// accidentally overflowing your stack if large input is passed to
// your function.
//
// Also, FixedArray is useful for writing portable code. Not all
// compilers support arrays of dynamic size.
// Most users should not specify an inline_elements argument and let
// FixedArray<> automatically determine the number of elements
// to store inline based on sizeof(T).
//
// If inline_elements is specified, the FixedArray<> implementation
// will store arrays of length <= inline_elements inline.
//
// Finally note that unlike vector<T> FixedArray<T> will not zero-initialize
// simple types like int, double, bool, etc.
//
// Non-POD types will be default-initialized just like regular vectors or
// arrays.
template <typename T, ssize_t inline_elements = -1>
class FixedArray {
public:
// For playing nicely with stl:
typedef T value_type;
typedef T* iterator;
typedef T const* const_iterator;
typedef T& reference;
typedef T const& const_reference;
typedef T* pointer;
typedef std::ptrdiff_t difference_type;
typedef size_t size_type;
// REQUIRES: n >= 0
// Creates an array object that can store "n" elements.
//
// FixedArray<T> will not zero-initialiaze POD (simple) types like int,
// double, bool, etc.
// Non-POD types will be default-initialized just like regular vectors or
// arrays.
explicit FixedArray(size_type n);
// Releases any resources.
~FixedArray();
// Returns the length of the array.
inline size_type size() const { return size_; }
// Returns the memory size of the array in bytes.
inline size_t memsize() const { return size_ * sizeof(T); }
// Returns a pointer to the underlying element array.
inline const T* get() const { return reinterpret_cast<T *>(array_); }
inline T* get() { return reinterpret_cast<T *>(array_); }
// REQUIRES: 0 <= i < size()
// Returns a reference to the "i"th element.
inline T& operator[](size_type i) {
DCHECK_GE(i, 0);
DCHECK_LT(i, size_);
return array_[i].element;
}
// REQUIRES: 0 <= i < size()
// Returns a reference to the "i"th element.
inline const T& operator[](size_type i) const {
DCHECK_GE(i, 0);
DCHECK_LT(i, size_);
return array_[i].element;
}
inline iterator begin() { return get(); }
inline iterator end() { return get() + size_; }
inline const_iterator begin() const { return get(); }
inline const_iterator end() const { return get() + size_; }
private:
// Container to hold elements of type T. This is necessary to handle
// the case where T is a a (C-style) array. The size of InnerContainer
// and T must be the same, otherwise callers' assumptions about use
// of this code will be broken.
struct InnerContainer {
T element;
};
COMPILE_ASSERT(sizeof(InnerContainer) == sizeof(T),
fixedarray_inner_container_size_mismatch);
// How many elements should we store inline?
// a. If not specified, use a default of 256 bytes (256 bytes
// seems small enough to not cause stack overflow or unnecessary
// stack pollution, while still allowing stack allocation for
// reasonably long character arrays.
// b. Never use 0 length arrays (not ISO C++)
static const size_type S1 = ((inline_elements < 0)
? (256/sizeof(T)) : inline_elements);
static const size_type S2 = (S1 <= 0) ? 1 : S1;
static const size_type kInlineElements = S2;
size_type const size_;
InnerContainer* const array_;
// Allocate some space, not an array of elements of type T, so that we can
// skip calling the T constructors and destructors for space we never use.
base::ManualConstructor<InnerContainer>
inline_space_[kInlineElements];
DISALLOW_EVIL_CONSTRUCTORS(FixedArray);
};
// Implementation details follow
template <class T, ssize_t S>
inline FixedArray<T, S>::FixedArray(typename FixedArray<T, S>::size_type n)
: size_(n),
array_((n <= kInlineElements
? reinterpret_cast<InnerContainer*>(inline_space_)
: new InnerContainer[n])) {
DCHECK_GE(n, 0);
// Construct only the elements actually used.
if (array_ == reinterpret_cast<InnerContainer*>(inline_space_)) {
for (int i = 0; i != size_; ++i) {
inline_space_[i].Init();
}
}
}
template <class T, ssize_t S>
inline FixedArray<T, S>::~FixedArray() {
if (array_ != reinterpret_cast<InnerContainer*>(inline_space_)) {
delete[] array_;
} else {
for (int i = 0; i != size_; ++i) {
inline_space_[i].Destroy();
}
}
}
#endif // UTIL_GTL_FIXEDARRAY_H__