mirror of
https://github.com/apache/impala.git
synced 2026-01-04 09:00:56 -05:00
The e2e unit tests for udfs can interact via the backend lib_cache, causing test flakes. IMPALA-6215 explains a race between the lib_cache and UdfExecutor in the frontend which is the likely the root cause. Two e2e tests use the same jar (test_java_udfs and test_udf_invalid_symbol), test_udf_invalid_symbol drops a function from that jar, which causes the use of that jar to fail in the test_java_udfs test. Since the state of lib_cache is per process, its state causes these interactions across unit tests. This change avoids the interactions by using separate jars for the separate tests. Change-Id: Ica3538788b1d2ab5e361261e2ade62780b838e65 Reviewed-on: http://gerrit.cloudera.org:8080/8593 Reviewed-by: Dan Hecht <dhecht@cloudera.com> Tested-by: Impala Public Jenkins
581 lines
26 KiB
Python
581 lines
26 KiB
Python
# Licensed to the Apache Software Foundation (ASF) under one
|
|
# or more contributor license agreements. See the NOTICE file
|
|
# distributed with this work for additional information
|
|
# regarding copyright ownership. The ASF licenses this file
|
|
# to you under the Apache License, Version 2.0 (the
|
|
# "License"); you may not use this file except in compliance
|
|
# with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
from copy import copy
|
|
import os
|
|
import pytest
|
|
from subprocess import check_call
|
|
|
|
from tests.beeswax.impala_beeswax import ImpalaBeeswaxException
|
|
from tests.common.impala_cluster import ImpalaCluster
|
|
from tests.common.impala_test_suite import ImpalaTestSuite
|
|
from tests.common.skip import SkipIfLocal
|
|
from tests.common.test_dimensions import (
|
|
create_exec_option_dimension,
|
|
create_exec_option_dimension_from_dict,
|
|
create_uncompressed_text_dimension)
|
|
from tests.util.calculation_util import get_random_id
|
|
from tests.util.filesystem_utils import get_fs_path, IS_S3
|
|
from tests.verifiers.metric_verifier import MetricVerifier
|
|
|
|
class TestUdfBase(ImpalaTestSuite):
|
|
"""
|
|
Base class with utility functions for testing UDFs.
|
|
"""
|
|
def _check_exception(self, e):
|
|
# The interesting exception message may be in 'e' or in its inner_exception
|
|
# depending on the point of query failure.
|
|
if 'Memory limit exceeded' in str(e) or 'Cancelled' in str(e):
|
|
return
|
|
if e.inner_exception is not None\
|
|
and ('Memory limit exceeded' in e.inner_exception.message
|
|
or 'Cancelled' not in e.inner_exception.message):
|
|
return
|
|
raise e
|
|
|
|
def _run_query_all_impalads(self, exec_options, query, expected):
|
|
impala_cluster = ImpalaCluster()
|
|
for impalad in impala_cluster.impalads:
|
|
client = impalad.service.create_beeswax_client()
|
|
result = self.execute_query_expect_success(client, query, exec_options)
|
|
assert result.data == expected
|
|
|
|
def _load_functions(self, template, vector, database, location):
|
|
queries = template.format(database=database, location=location)
|
|
# Split queries and remove empty lines
|
|
queries = [q for q in queries.split(';') if q.strip()]
|
|
exec_options = vector.get_value('exec_option')
|
|
for query in queries:
|
|
if query.strip() == '': continue
|
|
result = self.execute_query_expect_success(self.client, query, exec_options)
|
|
assert result is not None
|
|
|
|
# Create sample UDA functions in {database} from library {location}
|
|
create_sample_udas_template = """
|
|
create aggregate function {database}.test_count(int) returns bigint
|
|
location '{location}' update_fn='CountUpdate';
|
|
|
|
create aggregate function {database}.hll(int) returns string
|
|
location '{location}' update_fn='HllUpdate';
|
|
|
|
create aggregate function {database}.sum_small_decimal(decimal(9,2))
|
|
returns decimal(9,2) location '{location}' update_fn='SumSmallDecimalUpdate';
|
|
"""
|
|
|
|
# Create test UDA functions in {database} from library {location}
|
|
create_test_udas_template = """
|
|
create aggregate function {database}.trunc_sum(double)
|
|
returns bigint intermediate double location '{location}'
|
|
update_fn='TruncSumUpdate' merge_fn='TruncSumMerge'
|
|
serialize_fn='TruncSumSerialize' finalize_fn='TruncSumFinalize';
|
|
|
|
create aggregate function {database}.arg_is_const(int, int)
|
|
returns boolean location '{location}'
|
|
init_fn='ArgIsConstInit' update_fn='ArgIsConstUpdate' merge_fn='ArgIsConstMerge';
|
|
|
|
create aggregate function {database}.toggle_null(int)
|
|
returns int location '{location}'
|
|
update_fn='ToggleNullUpdate' merge_fn='ToggleNullMerge';
|
|
|
|
create aggregate function {database}.count_nulls(bigint)
|
|
returns bigint location '{location}'
|
|
update_fn='CountNullsUpdate' merge_fn='CountNullsMerge';
|
|
|
|
create aggregate function {database}.agg_intermediate(int)
|
|
returns bigint intermediate string location '{location}'
|
|
init_fn='AggIntermediateInit' update_fn='AggIntermediateUpdate'
|
|
merge_fn='AggIntermediateMerge' finalize_fn='AggIntermediateFinalize';
|
|
|
|
create aggregate function {database}.agg_decimal_intermediate(decimal(2,1), int)
|
|
returns decimal(6,5) intermediate decimal(4,3) location '{location}'
|
|
init_fn='AggDecimalIntermediateInit' update_fn='AggDecimalIntermediateUpdate'
|
|
merge_fn='AggDecimalIntermediateMerge' finalize_fn='AggDecimalIntermediateFinalize';
|
|
|
|
create aggregate function {database}.agg_string_intermediate(decimal(20,10), bigint, string)
|
|
returns decimal(20,0) intermediate string location '{location}'
|
|
init_fn='AggStringIntermediateInit' update_fn='AggStringIntermediateUpdate'
|
|
merge_fn='AggStringIntermediateMerge' finalize_fn='AggStringIntermediateFinalize';
|
|
|
|
create aggregate function {database}.char_intermediate_sum(int) returns int
|
|
intermediate char(10) LOCATION '{location}' update_fn='AggCharIntermediateUpdate'
|
|
init_fn='AggCharIntermediateInit' merge_fn='AggCharIntermediateMerge'
|
|
serialize_fn='AggCharIntermediateSerialize' finalize_fn='AggCharIntermediateFinalize';
|
|
"""
|
|
|
|
# Create test UDF functions in {database} from library {location}
|
|
create_udfs_template = """
|
|
create function {database}.identity(boolean) returns boolean
|
|
location '{location}' symbol='Identity';
|
|
|
|
create function {database}.identity(tinyint) returns tinyint
|
|
location '{location}' symbol='Identity';
|
|
|
|
create function {database}.identity(smallint) returns smallint
|
|
location '{location}' symbol='Identity';
|
|
|
|
create function {database}.identity(int) returns int
|
|
location '{location}' symbol='Identity';
|
|
|
|
create function {database}.identity(bigint) returns bigint
|
|
location '{location}' symbol='Identity';
|
|
|
|
create function {database}.identity(float) returns float
|
|
location '{location}' symbol='Identity';
|
|
|
|
create function {database}.identity(double) returns double
|
|
location '{location}' symbol='Identity';
|
|
|
|
create function {database}.identity(string) returns string
|
|
location '{location}'
|
|
symbol='_Z8IdentityPN10impala_udf15FunctionContextERKNS_9StringValE';
|
|
|
|
create function {database}.identity(timestamp) returns timestamp
|
|
location '{location}'
|
|
symbol='_Z8IdentityPN10impala_udf15FunctionContextERKNS_12TimestampValE';
|
|
|
|
create function {database}.identity(decimal(9,0)) returns decimal(9,0)
|
|
location '{location}'
|
|
symbol='_Z8IdentityPN10impala_udf15FunctionContextERKNS_10DecimalValE';
|
|
|
|
create function {database}.identity(decimal(18,1)) returns decimal(18,1)
|
|
location '{location}'
|
|
symbol='_Z8IdentityPN10impala_udf15FunctionContextERKNS_10DecimalValE';
|
|
|
|
create function {database}.identity(decimal(38,10)) returns decimal(38,10)
|
|
location '{location}'
|
|
symbol='_Z8IdentityPN10impala_udf15FunctionContextERKNS_10DecimalValE';
|
|
|
|
create function {database}.all_types_fn(
|
|
string, boolean, tinyint, smallint, int, bigint, float, double, decimal(2,0))
|
|
returns int
|
|
location '{location}' symbol='AllTypes';
|
|
|
|
create function {database}.no_args() returns string
|
|
location '{location}'
|
|
symbol='_Z6NoArgsPN10impala_udf15FunctionContextE';
|
|
|
|
create function {database}.var_and(boolean...) returns boolean
|
|
location '{location}' symbol='VarAnd';
|
|
|
|
create function {database}.var_sum(int...) returns int
|
|
location '{location}' symbol='VarSum';
|
|
|
|
create function {database}.var_sum(double...) returns double
|
|
location '{location}' symbol='VarSum';
|
|
|
|
create function {database}.var_sum(string...) returns int
|
|
location '{location}' symbol='VarSum';
|
|
|
|
create function {database}.var_sum(decimal(4,2)...) returns decimal(18,2)
|
|
location '{location}' symbol='VarSum';
|
|
|
|
create function {database}.var_sum_multiply(double, int...) returns double
|
|
location '{location}'
|
|
symbol='_Z14VarSumMultiplyPN10impala_udf15FunctionContextERKNS_9DoubleValEiPKNS_6IntValE';
|
|
|
|
create function {database}.var_sum_multiply2(double, int...) returns double
|
|
location '{location}'
|
|
symbol='_Z15VarSumMultiply2PN10impala_udf15FunctionContextERKNS_9DoubleValEiPKNS_6IntValE';
|
|
|
|
create function {database}.xpow(double, double) returns double
|
|
location '{location}'
|
|
symbol='_ZN6impala13MathFunctions3PowEPN10impala_udf15FunctionContextERKNS1_9DoubleValES6_';
|
|
|
|
create function {database}.to_lower(string) returns string
|
|
location '{location}'
|
|
symbol='_Z7ToLowerPN10impala_udf15FunctionContextERKNS_9StringValE';
|
|
|
|
create function {database}.to_upper(string) returns string
|
|
location '{location}'
|
|
symbol='_Z7ToUpperPN10impala_udf15FunctionContextERKNS_9StringValE';
|
|
|
|
create function {database}.constant_timestamp() returns timestamp
|
|
location '{location}' symbol='ConstantTimestamp';
|
|
|
|
create function {database}.validate_arg_type(string) returns boolean
|
|
location '{location}' symbol='ValidateArgType';
|
|
|
|
create function {database}.count_rows() returns bigint
|
|
location '{location}' symbol='Count' prepare_fn='CountPrepare' close_fn='CountClose';
|
|
|
|
create function {database}.constant_arg(int) returns int
|
|
location '{location}' symbol='ConstantArg' prepare_fn='ConstantArgPrepare' close_fn='ConstantArgClose';
|
|
|
|
create function {database}.validate_open(int) returns boolean
|
|
location '{location}' symbol='ValidateOpen'
|
|
prepare_fn='ValidateOpenPrepare' close_fn='ValidateOpenClose';
|
|
|
|
create function {database}.mem_test(bigint) returns bigint
|
|
location '{location}' symbol='MemTest'
|
|
prepare_fn='MemTestPrepare' close_fn='MemTestClose';
|
|
|
|
create function {database}.mem_test_leaks(bigint) returns bigint
|
|
location '{location}' symbol='MemTest'
|
|
prepare_fn='MemTestPrepare';
|
|
|
|
-- Regression test for IMPALA-1475
|
|
create function {database}.unmangled_symbol() returns bigint
|
|
location '{location}' symbol='UnmangledSymbol';
|
|
|
|
create function {database}.four_args(int, int, int, int) returns int
|
|
location '{location}' symbol='FourArgs';
|
|
|
|
create function {database}.five_args(int, int, int, int, int) returns int
|
|
location '{location}' symbol='FiveArgs';
|
|
|
|
create function {database}.six_args(int, int, int, int, int, int) returns int
|
|
location '{location}' symbol='SixArgs';
|
|
|
|
create function {database}.seven_args(int, int, int, int, int, int, int) returns int
|
|
location '{location}' symbol='SevenArgs';
|
|
|
|
create function {database}.eight_args(int, int, int, int, int, int, int, int) returns int
|
|
location '{location}' symbol='EightArgs';
|
|
|
|
create function {database}.twenty_args(int, int, int, int, int, int, int, int, int, int,
|
|
int, int, int, int, int, int, int, int, int, int) returns int
|
|
location '{location}' symbol='TwentyArgs';
|
|
|
|
create function {database}.twenty_one_args(int, int, int, int, int, int, int, int, int, int,
|
|
int, int, int, int, int, int, int, int, int, int, int) returns int
|
|
location '{location}' symbol='TwentyOneArgs';
|
|
"""
|
|
|
|
class TestUdfExecution(TestUdfBase):
|
|
"""Test execution of UDFs with a combination of different query options."""
|
|
@classmethod
|
|
def get_workload(cls):
|
|
return 'functional-query'
|
|
|
|
@classmethod
|
|
def add_test_dimensions(cls):
|
|
super(TestUdfExecution, cls).add_test_dimensions()
|
|
cls.ImpalaTestMatrix.add_dimension(
|
|
create_exec_option_dimension_from_dict({"disable_codegen" : [False, True],
|
|
"disable_codegen_rows_threshold" : [0],
|
|
"exec_single_node_rows_threshold" : [0,100],
|
|
"enable_expr_rewrites" : [False, True]}))
|
|
# There is no reason to run these tests using all dimensions.
|
|
cls.ImpalaTestMatrix.add_dimension(
|
|
create_uncompressed_text_dimension(cls.get_workload()))
|
|
|
|
def test_native_functions(self, vector, unique_database):
|
|
enable_expr_rewrites = vector.get_value('exec_option')['enable_expr_rewrites']
|
|
self._load_functions(
|
|
self.create_udfs_template, vector, unique_database,
|
|
get_fs_path('/test-warehouse/libTestUdfs.so'))
|
|
self._load_functions(
|
|
self.create_sample_udas_template, vector, unique_database,
|
|
get_fs_path('/test-warehouse/libudasample.so'))
|
|
self._load_functions(
|
|
self.create_test_udas_template, vector, unique_database,
|
|
get_fs_path('/test-warehouse/libTestUdas.so'))
|
|
|
|
self.run_test_case('QueryTest/udf', vector, use_db=unique_database)
|
|
if not vector.get_value('exec_option')['disable_codegen']:
|
|
self.run_test_case('QueryTest/udf-codegen-required', vector, use_db=unique_database)
|
|
self.run_test_case('QueryTest/uda', vector, use_db=unique_database)
|
|
self.run_test_case('QueryTest/udf-init-close', vector, use_db=unique_database)
|
|
# Some tests assume determinism or non-determinism, which depends on expr rewrites.
|
|
if enable_expr_rewrites:
|
|
self.run_test_case('QueryTest/udf-init-close-deterministic', vector,
|
|
use_db=unique_database)
|
|
else:
|
|
self.run_test_case('QueryTest/udf-non-deterministic', vector,
|
|
use_db=unique_database)
|
|
|
|
def test_ir_functions(self, vector, unique_database):
|
|
if vector.get_value('exec_option')['disable_codegen']:
|
|
# IR functions require codegen to be enabled.
|
|
return
|
|
enable_expr_rewrites = vector.get_value('exec_option')['enable_expr_rewrites']
|
|
self._load_functions(
|
|
self.create_udfs_template, vector, unique_database,
|
|
get_fs_path('/test-warehouse/test-udfs.ll'))
|
|
self.run_test_case('QueryTest/udf', vector, use_db=unique_database)
|
|
self.run_test_case('QueryTest/udf-init-close', vector, use_db=unique_database)
|
|
# Some tests assume determinism or non-determinism, which depends on expr rewrites.
|
|
if enable_expr_rewrites:
|
|
self.run_test_case('QueryTest/udf-init-close-deterministic', vector,
|
|
use_db=unique_database)
|
|
else:
|
|
self.run_test_case('QueryTest/udf-non-deterministic', vector,
|
|
use_db=unique_database)
|
|
|
|
def test_java_udfs(self, vector, unique_database):
|
|
self.run_test_case('QueryTest/load-java-udfs', vector, use_db=unique_database)
|
|
self.run_test_case('QueryTest/java-udf', vector, use_db=unique_database)
|
|
|
|
def test_udf_errors(self, vector, unique_database):
|
|
# Only run with codegen disabled to force interpretation path to be taken.
|
|
# Aim to exercise two failure cases:
|
|
# 1. too many arguments
|
|
# 2. IR UDF
|
|
if vector.get_value('exec_option')['disable_codegen']:
|
|
self.run_test_case('QueryTest/udf-errors', vector, use_db=unique_database)
|
|
|
|
# Run serially because this will blow the process limit, potentially causing other
|
|
# queries to fail
|
|
@pytest.mark.execute_serially
|
|
def test_mem_limits(self, vector, unique_database):
|
|
# Set the mem limit high enough that a simple scan can run
|
|
mem_limit = 1024 * 1024
|
|
vector = copy(vector)
|
|
vector.get_value('exec_option')['mem_limit'] = mem_limit
|
|
try:
|
|
self.run_test_case('QueryTest/udf-mem-limit', vector, use_db=unique_database)
|
|
assert False, "Query was expected to fail"
|
|
except ImpalaBeeswaxException, e:
|
|
self._check_exception(e)
|
|
|
|
try:
|
|
self.run_test_case('QueryTest/uda-mem-limit', vector, use_db=unique_database)
|
|
assert False, "Query was expected to fail"
|
|
except ImpalaBeeswaxException, e:
|
|
self._check_exception(e)
|
|
|
|
# It takes a long time for Impala to free up memory after this test, especially if
|
|
# ASAN is enabled. Verify that all fragments finish executing before moving on to the
|
|
# next test to make sure that the next test is not affected.
|
|
for impalad in ImpalaCluster().impalads:
|
|
verifier = MetricVerifier(impalad.service)
|
|
verifier.wait_for_metric("impala-server.num-fragments-in-flight", 0)
|
|
verifier.verify_num_unused_buffers()
|
|
|
|
def test_udf_constant_folding(self, vector, unique_database):
|
|
"""Test that constant folding of UDFs is handled correctly. Uses count_rows(),
|
|
which returns a unique value every time it is evaluated in the same thread."""
|
|
exec_options = copy(vector.get_value('exec_option'))
|
|
# Execute on a single node so that all counter values will be unique.
|
|
exec_options["num_nodes"] = 1
|
|
create_fn_query = """create function {database}.count_rows() returns bigint
|
|
location '{location}' symbol='Count' prepare_fn='CountPrepare'
|
|
close_fn='CountClose'"""
|
|
self._load_functions(create_fn_query, vector, unique_database,
|
|
get_fs_path('/test-warehouse/libTestUdfs.so'))
|
|
|
|
# Only one distinct value if the expression is constant folded, otherwise one
|
|
# value per row in alltypes
|
|
expected_ndv = 1 if exec_options['enable_expr_rewrites'] else 7300
|
|
|
|
# Test fully constant expression, evaluated in FE.
|
|
query = "select `{0}`.count_rows() from functional.alltypes".format(unique_database)
|
|
result = self.execute_query_expect_success(self.client, query, exec_options)
|
|
actual_ndv = len(set(result.data))
|
|
assert actual_ndv == expected_ndv
|
|
|
|
# Test constant argument to a non-constant expr. The argument value can be
|
|
# cached in the backend.
|
|
query = """select concat(cast(`{0}`.count_rows() as string), '-', string_col)
|
|
from functional.alltypes""".format(unique_database)
|
|
result = self.execute_query_expect_success(self.client, query, exec_options)
|
|
actual_ndv = len(set(value.split("-")[0] for value in result.data))
|
|
assert actual_ndv == expected_ndv
|
|
|
|
|
|
class TestUdfTargeted(TestUdfBase):
|
|
"""Targeted UDF tests that don't need to be run under the full combination of
|
|
exec options."""
|
|
@classmethod
|
|
def get_workload(cls):
|
|
return 'functional-query'
|
|
|
|
@classmethod
|
|
def add_test_dimensions(cls):
|
|
super(TestUdfTargeted, cls).add_test_dimensions()
|
|
# There is no reason to run these tests using all dimensions.
|
|
cls.ImpalaTestMatrix.add_dimension(
|
|
create_uncompressed_text_dimension(cls.get_workload()))
|
|
|
|
def test_udf_invalid_symbol(self, vector, unique_database):
|
|
""" IMPALA-1642: Impala crashes if the symbol for a Hive UDF doesn't exist
|
|
Crashing is non-deterministic so we run the UDF several times."""
|
|
src_udf_path = os.path.join(
|
|
os.environ['IMPALA_HOME'], 'testdata/udfs/impala-hive-udfs.jar')
|
|
tgt_udf_path = get_fs_path(
|
|
'/test-warehouse/{0}.db/impala-hive-udfs.jar'.format(unique_database))
|
|
drop_fn_stmt = (
|
|
"drop function if exists `{0}`.fn_invalid_symbol(STRING)".format(unique_database))
|
|
create_fn_stmt = (
|
|
"create function `{0}`.fn_invalid_symbol(STRING) returns "
|
|
"STRING LOCATION '{1}' SYMBOL='not.a.Symbol'".format(
|
|
unique_database, tgt_udf_path))
|
|
query = "select `{0}`.fn_invalid_symbol('test')".format(unique_database)
|
|
|
|
# Dropping the function can interact with other tests whose Java classes are in
|
|
# the same jar. Use a copy of the jar to avoid unintended interactions.
|
|
# See IMPALA-6215 and IMPALA-6092 for examples.
|
|
check_call(["hadoop", "fs", "-put", "-f", src_udf_path, tgt_udf_path])
|
|
self.client.execute(drop_fn_stmt)
|
|
self.client.execute(create_fn_stmt)
|
|
for _ in xrange(5):
|
|
ex = self.execute_query_expect_failure(self.client, query)
|
|
assert "Unable to find class" in str(ex)
|
|
self.client.execute(drop_fn_stmt)
|
|
|
|
@SkipIfLocal.multiple_impalad
|
|
def test_hive_udfs_missing_jar(self, vector, unique_database):
|
|
""" IMPALA-2365: Impalad shouldn't crash if the udf jar isn't present
|
|
on HDFS"""
|
|
# Copy hive-exec.jar to a temporary file
|
|
jar_path = get_fs_path("/test-warehouse/{0}.db/".format(unique_database)
|
|
+ get_random_id(5) + ".jar")
|
|
hive_jar = get_fs_path("/test-warehouse/hive-exec.jar")
|
|
check_call(["hadoop", "fs", "-cp", hive_jar, jar_path])
|
|
drop_fn_stmt = (
|
|
"drop function if exists "
|
|
"`{0}`.`pi_missing_jar`()".format(unique_database))
|
|
create_fn_stmt = (
|
|
"create function `{0}`.`pi_missing_jar`() returns double location '{1}' "
|
|
"symbol='org.apache.hadoop.hive.ql.udf.UDFPI'".format(unique_database, jar_path))
|
|
|
|
cluster = ImpalaCluster()
|
|
impalad = cluster.get_any_impalad()
|
|
client = impalad.service.create_beeswax_client()
|
|
# Create and drop functions with sync_ddl to make sure they are reflected
|
|
# in every impalad.
|
|
exec_option = copy(vector.get_value('exec_option'))
|
|
exec_option['sync_ddl'] = 1
|
|
|
|
self.execute_query_expect_success(client, drop_fn_stmt, exec_option)
|
|
self.execute_query_expect_success(client, create_fn_stmt, exec_option)
|
|
# Delete the udf jar
|
|
check_call(["hadoop", "fs", "-rm", jar_path])
|
|
|
|
different_impalad = cluster.get_different_impalad(impalad)
|
|
client = different_impalad.service.create_beeswax_client()
|
|
# Run a query using the udf from an impalad other than the one
|
|
# we used to create the function. This is to bypass loading from
|
|
# the cache
|
|
try:
|
|
self.execute_query_using_client(
|
|
client, "select `{0}`.`pi_missing_jar`()".format(unique_database), vector)
|
|
assert False, "Query expected to fail"
|
|
except ImpalaBeeswaxException, e:
|
|
assert "Failed to get file info" in str(e)
|
|
|
|
def test_libs_with_same_filenames(self, vector, unique_database):
|
|
self.run_test_case('QueryTest/libs_with_same_filenames', vector, use_db=unique_database)
|
|
|
|
def test_udf_update_via_drop(self, vector, unique_database):
|
|
"""Test updating the UDF binary without restarting Impala. Dropping
|
|
the function should remove the binary from the local cache."""
|
|
# Run with sync_ddl to guarantee the drop is processed by all impalads.
|
|
exec_options = copy(vector.get_value('exec_option'))
|
|
exec_options['sync_ddl'] = 1
|
|
old_udf = os.path.join(
|
|
os.environ['IMPALA_HOME'], 'testdata/udfs/impala-hive-udfs.jar')
|
|
new_udf = os.path.join(
|
|
os.environ['IMPALA_HOME'], 'tests/test-hive-udfs/target/test-hive-udfs-1.0.jar')
|
|
udf_dst = get_fs_path(
|
|
'/test-warehouse/{0}.db/impala-hive-udfs.jar'.format(unique_database))
|
|
|
|
drop_fn_stmt = (
|
|
'drop function if exists `{0}`.`udf_update_test_drop`()'.format(unique_database))
|
|
create_fn_stmt = (
|
|
"create function `{0}`.`udf_update_test_drop`() returns string LOCATION '{1}' "
|
|
"SYMBOL='org.apache.impala.TestUpdateUdf'".format(unique_database, udf_dst))
|
|
query_stmt = "select `{0}`.`udf_update_test_drop`()".format(unique_database)
|
|
|
|
# Put the old UDF binary on HDFS, make the UDF in Impala and run it.
|
|
check_call(["hadoop", "fs", "-put", "-f", old_udf, udf_dst])
|
|
self.execute_query_expect_success(self.client, drop_fn_stmt, exec_options)
|
|
self.execute_query_expect_success(self.client, create_fn_stmt, exec_options)
|
|
self._run_query_all_impalads(exec_options, query_stmt, ["Old UDF"])
|
|
|
|
# Update the binary, drop and create the function again. The new binary should
|
|
# be running.
|
|
check_call(["hadoop", "fs", "-put", "-f", new_udf, udf_dst])
|
|
self.execute_query_expect_success(self.client, drop_fn_stmt, exec_options)
|
|
self.execute_query_expect_success(self.client, create_fn_stmt, exec_options)
|
|
self._run_query_all_impalads(exec_options, query_stmt, ["New UDF"])
|
|
|
|
def test_udf_update_via_create(self, vector, unique_database):
|
|
"""Test updating the UDF binary without restarting Impala. Creating a new function
|
|
from the library should refresh the cache."""
|
|
# Run with sync_ddl to guarantee the create is processed by all impalads.
|
|
exec_options = copy(vector.get_value('exec_option'))
|
|
exec_options['sync_ddl'] = 1
|
|
old_udf = os.path.join(
|
|
os.environ['IMPALA_HOME'], 'testdata/udfs/impala-hive-udfs.jar')
|
|
new_udf = os.path.join(
|
|
os.environ['IMPALA_HOME'], 'tests/test-hive-udfs/target/test-hive-udfs-1.0.jar')
|
|
udf_dst = get_fs_path(
|
|
'/test-warehouse/{0}.db/impala-hive-udfs.jar'.format(unique_database))
|
|
old_function_name = "udf_update_test_create1"
|
|
new_function_name = "udf_update_test_create2"
|
|
|
|
drop_fn_template = 'drop function if exists `{0}`.`{{0}}`()'.format(unique_database)
|
|
self.execute_query_expect_success(
|
|
self.client, drop_fn_template.format(old_function_name), exec_options)
|
|
self.execute_query_expect_success(
|
|
self.client, drop_fn_template.format(new_function_name), exec_options)
|
|
|
|
create_fn_template = (
|
|
"create function `{0}`.`{{0}}`() returns string LOCATION '{1}' "
|
|
"SYMBOL='org.apache.impala.TestUpdateUdf'".format(unique_database, udf_dst))
|
|
|
|
query_template = "select `{0}`.`{{0}}`()".format(unique_database)
|
|
|
|
# Put the old UDF binary on HDFS, make the UDF in Impala and run it.
|
|
check_call(["hadoop", "fs", "-put", "-f", old_udf, udf_dst])
|
|
self.execute_query_expect_success(
|
|
self.client, create_fn_template.format(old_function_name), exec_options)
|
|
self._run_query_all_impalads(
|
|
exec_options, query_template.format(old_function_name), ["Old UDF"])
|
|
|
|
# Update the binary, and create a new function using the binary. The new binary
|
|
# should be running.
|
|
check_call(["hadoop", "fs", "-put", "-f", new_udf, udf_dst])
|
|
self.execute_query_expect_success(
|
|
self.client, create_fn_template.format(new_function_name), exec_options)
|
|
self._run_query_all_impalads(
|
|
exec_options, query_template.format(new_function_name), ["New UDF"])
|
|
|
|
# The old function should use the new library now
|
|
self._run_query_all_impalads(
|
|
exec_options, query_template.format(old_function_name), ["New UDF"])
|
|
|
|
def test_drop_function_while_running(self, vector, unique_database):
|
|
self.client.execute("drop function if exists `{0}`.drop_while_running(BIGINT)"
|
|
.format(unique_database))
|
|
self.client.execute(
|
|
"create function `{0}`.drop_while_running(BIGINT) returns "
|
|
"BIGINT LOCATION '{1}' SYMBOL='Identity'".format(
|
|
unique_database,
|
|
get_fs_path('/test-warehouse/libTestUdfs.so')))
|
|
query = ("select `{0}`.drop_while_running(l_orderkey) from tpch.lineitem limit 10000"
|
|
.format(unique_database))
|
|
|
|
# Run this query asynchronously.
|
|
handle = self.execute_query_async(query, vector.get_value('exec_option'),
|
|
table_format=vector.get_value('table_format'))
|
|
|
|
# Fetch some rows from the async query to make sure the UDF is being used
|
|
results = self.client.fetch(query, handle, 1)
|
|
assert results.success
|
|
assert len(results.data) == 1
|
|
|
|
# Drop the function while the original query is running.
|
|
self.client.execute(
|
|
"drop function `{0}`.drop_while_running(BIGINT)".format(unique_database))
|
|
|
|
# Fetch the rest of the rows, this should still be able to run the UDF
|
|
results = self.client.fetch(query, handle, -1)
|
|
assert results.success
|
|
assert len(results.data) == 9999
|