mirror of
https://github.com/apache/impala.git
synced 2025-12-20 02:20:11 -05:00
This patch removes a flaky part of the test that relies on query completion rate. Since we are already verifying that number of healthy executor groups increases, this additional check is not adding much to the test. Change-Id: I6f75afdbe676d9dd6922b6ba8aa1919daa161947 Reviewed-on: http://gerrit.cloudera.org:8080/17239 Reviewed-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com> Tested-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
241 lines
9.4 KiB
Python
241 lines
9.4 KiB
Python
#!/usr/bin/env impala-python
|
|
#
|
|
# Licensed to the Apache Software Foundation (ASF) under one
|
|
# or more contributor license agreements. See the NOTICE file
|
|
# distributed with this work for additional information
|
|
# regarding copyright ownership. The ASF licenses this file
|
|
# to you under the Apache License, Version 2.0 (the
|
|
# "License"); you may not use this file except in compliance
|
|
# with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
import logging
|
|
import pytest
|
|
from time import sleep, time
|
|
|
|
from tests.util.auto_scaler import AutoScaler
|
|
from tests.util.concurrent_workload import ConcurrentWorkload
|
|
from tests.common.custom_cluster_test_suite import CustomClusterTestSuite
|
|
from tests.common.skip import SkipIfEC
|
|
|
|
LOG = logging.getLogger("test_auto_scaling")
|
|
TOTAL_BACKENDS_METRIC_NAME = "cluster-membership.backends.total"
|
|
|
|
class TestAutoScaling(CustomClusterTestSuite):
|
|
@classmethod
|
|
def get_workload(cls):
|
|
return 'functional-query'
|
|
|
|
@classmethod
|
|
def setup_class(cls):
|
|
if cls.exploration_strategy() != 'exhaustive':
|
|
pytest.skip('runs only in exhaustive')
|
|
super(TestAutoScaling, cls).setup_class()
|
|
|
|
"""This class contains tests that exercise the logic related to scaling clusters up and
|
|
down by adding and removing groups of executors."""
|
|
INITIAL_STARTUP_TIME_S = 10
|
|
STATE_CHANGE_TIMEOUT_S = 60
|
|
# This query will scan two partitions (month = 1, 2) and thus will have 1 fragment
|
|
# instance per executor on groups of size 2. Each partition has 2 rows, so it performs
|
|
# two comparisons and should take around 2 second to complete.
|
|
QUERY = """select * from functional_parquet.alltypestiny where month < 3
|
|
and id + random() < sleep(1000)"""
|
|
|
|
def _get_total_admitted_queries(self):
|
|
admitted_queries = self.impalad_test_service.get_total_admitted_queries(
|
|
"default-pool")
|
|
LOG.info("Current total admitted queries: %s", admitted_queries)
|
|
return admitted_queries
|
|
|
|
def _get_num_backends(self):
|
|
metric_val = self.impalad_test_service.get_metric_value(TOTAL_BACKENDS_METRIC_NAME)
|
|
LOG.info("Getting metric %s : %s", TOTAL_BACKENDS_METRIC_NAME, metric_val)
|
|
return metric_val
|
|
|
|
def _get_num_running_queries(self):
|
|
running_queries = self.impalad_test_service.get_num_running_queries("default-pool")
|
|
LOG.info("Current running queries: %s", running_queries)
|
|
return running_queries
|
|
|
|
@SkipIfEC.fix_later
|
|
def test_single_workload(self):
|
|
"""This test exercises the auto-scaling logic in the admission controller. It spins up
|
|
a base cluster (coordinator, catalog, statestore), runs a workload to initiate a
|
|
scaling up event as the queries start queuing, then stops the workload and observes
|
|
that the cluster gets shutdown."""
|
|
GROUP_SIZE = 2
|
|
EXECUTOR_SLOTS = 3
|
|
auto_scaler = AutoScaler(executor_slots=EXECUTOR_SLOTS, group_size=GROUP_SIZE)
|
|
workload = None
|
|
try:
|
|
auto_scaler.start()
|
|
sleep(self.INITIAL_STARTUP_TIME_S)
|
|
|
|
workload = ConcurrentWorkload(self.QUERY, num_streams=5)
|
|
LOG.info("Starting workload")
|
|
workload.start()
|
|
|
|
# Wait for workers to spin up
|
|
cluster_size = GROUP_SIZE + 1 # +1 to include coordinator.
|
|
assert any(self._get_num_backends() >= cluster_size or sleep(1)
|
|
for _ in range(self.STATE_CHANGE_TIMEOUT_S)), \
|
|
"Number of backends did not increase within %s s" % self.STATE_CHANGE_TIMEOUT_S
|
|
assert self.impalad_test_service.get_metric_value(
|
|
"cluster-membership.executor-groups.total-healthy") >= 1
|
|
|
|
# Wait until we admitted at least 10 queries
|
|
assert any(self._get_total_admitted_queries() >= 10 or sleep(1)
|
|
for _ in range(self.STATE_CHANGE_TIMEOUT_S)), \
|
|
"Did not admit enough queries within %s s" % self.STATE_CHANGE_TIMEOUT_S
|
|
# Wait for second executor group to start
|
|
cluster_size = (2 * GROUP_SIZE) + 1
|
|
assert any(self._get_num_backends() >= cluster_size or sleep(1)
|
|
for _ in range(self.STATE_CHANGE_TIMEOUT_S)), \
|
|
"Number of backends did not reach %s within %s s" % (
|
|
cluster_size, self.STATE_CHANGE_TIMEOUT_S)
|
|
assert self.impalad_test_service.get_metric_value(
|
|
"cluster-membership.executor-groups.total-healthy") >= 2
|
|
|
|
LOG.info("Stopping workload")
|
|
workload.stop()
|
|
|
|
# Wait for workers to spin down
|
|
self.impalad_test_service.wait_for_metric_value(
|
|
TOTAL_BACKENDS_METRIC_NAME, 1,
|
|
timeout=self.STATE_CHANGE_TIMEOUT_S, interval=1)
|
|
assert self.impalad_test_service.get_metric_value(
|
|
"cluster-membership.executor-groups.total") == 0
|
|
|
|
finally:
|
|
if workload:
|
|
workload.stop()
|
|
LOG.info("Stopping auto scaler")
|
|
auto_scaler.stop()
|
|
|
|
@SkipIfEC.fix_later
|
|
def test_single_group_maxed_out(self):
|
|
"""This test starts an auto scaler and limits it to a single executor group. It then
|
|
makes sure that the query throughput does not exceed the expected limit."""
|
|
GROUP_SIZE = 2
|
|
EXECUTOR_SLOTS = 3
|
|
auto_scaler = AutoScaler(executor_slots=EXECUTOR_SLOTS, group_size=GROUP_SIZE,
|
|
max_groups=1, coordinator_slots=EXECUTOR_SLOTS)
|
|
workload = None
|
|
try:
|
|
auto_scaler.start()
|
|
sleep(self.INITIAL_STARTUP_TIME_S)
|
|
|
|
workload = ConcurrentWorkload(self.QUERY, num_streams=5)
|
|
LOG.info("Starting workload")
|
|
workload.start()
|
|
|
|
# Wait for workers to spin up
|
|
cluster_size = GROUP_SIZE + 1 # +1 to include coordinator.
|
|
self.impalad_test_service.wait_for_metric_value(
|
|
TOTAL_BACKENDS_METRIC_NAME, cluster_size,
|
|
timeout=self.STATE_CHANGE_TIMEOUT_S, interval=1)
|
|
|
|
# Wait until we admitted at least 10 queries
|
|
assert any(self._get_total_admitted_queries() >= 10 or sleep(1)
|
|
for _ in range(self.STATE_CHANGE_TIMEOUT_S)), \
|
|
"Did not admit enough queries within %s s" % self.STATE_CHANGE_TIMEOUT_S
|
|
|
|
# Sample the number of running queries for while
|
|
SAMPLE_NUM_RUNNING_S = 30
|
|
end_time = time() + SAMPLE_NUM_RUNNING_S
|
|
num_running = []
|
|
while time() < end_time:
|
|
num_running.append(self._get_num_running_queries())
|
|
sleep(1)
|
|
|
|
# Must reach EXECUTOR_SLOTS but not exceed it
|
|
assert max(num_running) == EXECUTOR_SLOTS, \
|
|
"Unexpected number of running queries: %s" % num_running
|
|
|
|
# Check that only a single group started
|
|
assert self.impalad_test_service.get_metric_value(
|
|
"cluster-membership.executor-groups.total-healthy") == 1
|
|
|
|
LOG.info("Stopping workload")
|
|
workload.stop()
|
|
|
|
# Wait for workers to spin down
|
|
self.impalad_test_service.wait_for_metric_value(
|
|
TOTAL_BACKENDS_METRIC_NAME, 1,
|
|
timeout=self.STATE_CHANGE_TIMEOUT_S, interval=1)
|
|
assert self.impalad_test_service.get_metric_value(
|
|
"cluster-membership.executor-groups.total") == 0
|
|
|
|
finally:
|
|
if workload:
|
|
workload.stop()
|
|
LOG.info("Stopping auto scaler")
|
|
auto_scaler.stop()
|
|
|
|
@SkipIfEC.fix_later
|
|
def test_sequential_startup(self):
|
|
"""This test starts an executor group sequentially and observes that no queries are
|
|
admitted until the group has been fully started."""
|
|
# Larger groups size so it takes a while to start up
|
|
GROUP_SIZE = 4
|
|
EXECUTOR_SLOTS = 3
|
|
auto_scaler = AutoScaler(executor_slots=EXECUTOR_SLOTS, group_size=GROUP_SIZE,
|
|
start_batch_size=1, max_groups=1)
|
|
workload = None
|
|
try:
|
|
auto_scaler.start()
|
|
sleep(self.INITIAL_STARTUP_TIME_S)
|
|
|
|
workload = ConcurrentWorkload(self.QUERY, num_streams=5)
|
|
LOG.info("Starting workload")
|
|
workload.start()
|
|
|
|
# Wait for first executor to start up
|
|
self.impalad_test_service.wait_for_metric_value(
|
|
"cluster-membership.executor-groups.total", 1,
|
|
timeout=self.STATE_CHANGE_TIMEOUT_S, interval=1)
|
|
|
|
# Wait for remaining executors to start up and make sure that no queries are
|
|
# admitted during startup
|
|
end_time = time() + self.STATE_CHANGE_TIMEOUT_S
|
|
startup_complete = False
|
|
cluster_size = GROUP_SIZE + 1 # +1 to include coordinator.
|
|
while time() < end_time:
|
|
num_admitted = self._get_total_admitted_queries()
|
|
num_backends = self._get_num_backends()
|
|
if num_backends < cluster_size:
|
|
assert num_admitted == 0, "%s/%s backends started but %s queries have " \
|
|
"already been admitted." % (num_backends, cluster_size, num_admitted)
|
|
if num_admitted > 0:
|
|
assert num_backends == cluster_size
|
|
startup_complete = True
|
|
break
|
|
sleep(1)
|
|
|
|
assert startup_complete, "Did not start up in %s s" % self.STATE_CHANGE_TIMEOUT_S
|
|
|
|
LOG.info("Stopping workload")
|
|
workload.stop()
|
|
|
|
# Wait for workers to spin down
|
|
self.impalad_test_service.wait_for_metric_value(
|
|
TOTAL_BACKENDS_METRIC_NAME, 1,
|
|
timeout=self.STATE_CHANGE_TIMEOUT_S, interval=1)
|
|
assert self.impalad_test_service.get_metric_value(
|
|
"cluster-membership.executor-groups.total") == 0
|
|
|
|
finally:
|
|
if workload:
|
|
workload.stop()
|
|
LOG.info("Stopping auto scaler")
|
|
auto_scaler.stop()
|