Files
impala/tests/query_test/test_aggregation.py
Lenni Kuff bb09b5270f IMPALA-839: Update tests to be more thorough when run exhaustively
Some tests have constraints that were there only to help reduce runtime which
reduces coverage when running in exhaustive mode. The majority of the constraints
are because it adds no value to run the test across additional dimensions (or
it is invalid to run with those dimensions). Updates the tests that have
legitimate constraints to use two new helper methods for constraining the table format
dimension:
create_uncompressed_text_dimension()
create_parquet_dimension()

These will create a dimension that will produce a single test vector, either
uncompressed text or parquet respectively.

Change-Id: Id85387c1efd5d192f8059ef89934933389bfe247
Reviewed-on: http://gerrit.ent.cloudera.com:8080/2149
Reviewed-by: Lenni Kuff <lskuff@cloudera.com>
Tested-by: jenkins
(cherry picked from commit e02acbd469bc48c684b2089405b4a20552802481)
Reviewed-on: http://gerrit.ent.cloudera.com:8080/2290
2014-04-18 20:11:31 -07:00

74 lines
2.8 KiB
Python

#!/usr/bin/env python
# Copyright (c) 2012 Cloudera, Inc. All rights reserved.
# Validates all aggregate functions across all datatypes
#
import logging
import pytest
from tests.common.test_vector import *
from tests.common.impala_test_suite import ImpalaTestSuite
from tests.util.test_file_parser import QueryTestSectionReader
agg_functions = ['sum', 'count', 'min', 'max', 'avg']
data_types = ['int', 'bool', 'double', 'bigint', 'tinyint',
'smallint', 'float', 'timestamp']
result_lut = {
# TODO: Add verification for other types
'sum-tinyint': 45000, 'avg-tinyint': 5, 'count-tinyint': 9000,
'min-tinyint': 1, 'max-tinyint': 9,
'sum-smallint': 495000, 'avg-smallint': 50, 'count-smallint': 9900,
'min-smallint': 1, 'max-smallint': 99,
'sum-int': 4995000, 'avg-int': 500, 'count-int': 9990,
'min-int': 1, 'max-int': 999,
'sum-bigint': 49950000, 'avg-bigint': 5000, 'count-bigint': 9990,
'min-bigint': 10, 'max-bigint': 9990,
}
class TestAggregation(ImpalaTestSuite):
@classmethod
def get_workload(self):
return 'functional-query'
@classmethod
def add_test_dimensions(cls):
super(TestAggregation, cls).add_test_dimensions()
# Add two more dimensions
cls.TestMatrix.add_dimension(TestDimension('agg_func', *agg_functions))
cls.TestMatrix.add_dimension(TestDimension('data_type', *data_types))
cls.TestMatrix.add_constraint(lambda v: cls.is_valid_vector(v))
@classmethod
def is_valid_vector(cls, vector):
# Reduce execution time when exploration strategy is 'core'
if cls.exploration_strategy() == 'core':
if vector.get_value('exec_option')['batch_size'] != 0: return False
data_type, agg_func = vector.get_value('data_type'), vector.get_value('agg_func')
file_format = vector.get_value('table_format').file_format
# Avro doesn't have timestamp type
if file_format == 'avro' and data_type == 'timestamp':
return False
elif agg_func not in ['min', 'max', 'count'] and data_type == 'bool':
return False
elif agg_func == 'sum' and data_type == 'timestamp':
return False
return True
def test_aggregation(self, vector):
data_type, agg_func = (vector.get_value('data_type'), vector.get_value('agg_func'))
query = 'select %s(%s_col) from alltypesagg' % (agg_func, data_type)
result = self.execute_scalar(query, vector.get_value('exec_option'),
table_format=vector.get_value('table_format'))
if 'int' in data_type:
assert result_lut['%s-%s' % (agg_func, data_type)] == int(result)
# AVG
if vector.get_value('data_type') == 'timestamp' and\
vector.get_value('agg_func') == 'avg':
return
query = 'select %s(DISTINCT(%s_col)) from alltypesagg' % (agg_func, data_type)
result = self.execute_scalar(query, vector.get_value('exec_option'))