Files
impala/tests/common/test_vector.py
Dan Hecht ffa7829b70 IMPALA-3918: Remove Cloudera copyrights and add ASF license header
For files that have a Cloudera copyright (and no other copyright
notice), make changes to follow the ASF source file header policy here:

http://www.apache.org/legal/src-headers.html#headers

Specifically:
1) Remove the Cloudera copyright.
2) Modify NOTICE.txt according to
   http://www.apache.org/legal/src-headers.html#notice
   to follow that format and add a line for Cloudera.
3) Replace or add the existing ASF license text with the one given
   on the website.

Much of this change was automatically generated via:

git grep -li 'Copyright.*Cloudera' > modified_files.txt
cat modified_files.txt | xargs perl -n -i -e 'print unless m#Copyright.*Cloudera#i;'
cat modified_files_txt | xargs fix_apache_license.py [1]

Some manual fixups were performed following those steps, especially when
license text was completely missing from the file.

[1] https://gist.github.com/anonymous/ff71292094362fc5c594 with minor
    modification to ORIG_LICENSE to match Impala's license text.

Change-Id: I2e0bd8420945b953e1b806041bea4d72a3943d86
Reviewed-on: http://gerrit.cloudera.org:8080/3779
Reviewed-by: Dan Hecht <dhecht@cloudera.com>
Tested-by: Internal Jenkins
2016-08-09 08:19:41 +00:00

155 lines
6.1 KiB
Python

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# A TextMatrix is used to generate a set of TestVectors. The vectors that are generated
# are based on one or more TestDimensions inputs. These lists define the set of
# values that are interesting to a test. For example, for file_format these might be
# 'seq', 'text', etc
#
# The TestMatrix is then used to generate a set of TestVectors. Each TestVector contains a
# single value from each of the input TestDimensions. An example:
#
# TestMatrix.add_dimension('file_format', 'seq', 'text')
# TestMatrix.add_dimension('agg_func', 'min', 'max', 'sum')
# TestMatrix.add_dimension('col_type', 'int', 'bool')
# test_vectors = TestMatrix.generate_test_vectors(...)
#
# Would return a collection of TestVectors, with each one containing a combination of
# file_format, agg_func, and col_type:
# seq, min, int
# text, max, bool
# ...
#
# A TestVector is an object itself, and the 'get_value' function is used to extract the
# actual value from the TestVector for this particular combination:
# test_vector = test_vectors[0]
# print test_vector.get_value('file_format')
#
# The combinations of TestVectors generated can be done in two ways: pairwise and
# exhaustive. Pairwise provides a way to get good coverage and reduce the total number
# of combinations generated where exhaustive will generate all valid combinations.
#
# Finally, the TestMatrix also provides a way to add constraints to the vectors that
# are generated. This is useful to filter out invalid combinations. These can be added
# before calling 'generate_test_vectors'. The constraint is a function that
# accepts a TestVector object and returns true if the vector is valid, false otherwise.
# For example, if we want to make sure 'bool' columns are not used with 'sum':
#
# TestMatrix.add_constraint(lambda v:\
# not (v.get_value('col_type') == 'bool and v.get_value('agg_func') == 'sum'))
#
# Additional examples of usage can be found within the test suites.
from itertools import product
# A list of test dimension values.
class TestDimension(list):
def __init__(self, name, *args):
self.name = name
self.extend([TestVector.Value(name, arg) for arg in args])
# A test vector that passed to test method. The TestVector can be used to extract values
# for the specified dimension(s)
class TestVector(object):
def __init__(self, vector_values):
self.vector_values = vector_values
def get_value(self, name):
return next(vector_value for vector_value in self.vector_values\
if vector_value.name == name).value
def __str__(self):
return ' | '.join(['%s' % vector_value for vector_value in self.vector_values])
# Each value in a test vector is wrapped in the Value object. This wrapping is
# done internally so this object should never need to be created by the user.
class Value(object):
def __init__(self, name, value):
self.name = name
self.value = value
def __str__(self):
return '%s: %s' % (self.name, self.value)
# Matrix -> Collection of vectors
# Vector -> Call to get specific values
class TestMatrix(object):
def __init__(self, *args):
self.dimensions = dict((arg.name, arg) for arg in args)
self.constraint_list = list()
def add_dimension(self, dimension):
self.dimensions[dimension.name] = dimension
def clear(self):
self.dimensions.clear()
def clear_dimension(self, dimension_name):
del self.dimensions[dimension_name]
def has_dimension(self, dimension_name):
return self.dimensions.has_key(dimension_name)
def generate_test_vectors(self, exploration_strategy):
if not self.dimensions:
return list()
# TODO: Check valid exploration strategies, provide more options for exploration
if exploration_strategy == 'exhaustive':
return self.__generate_exhaustive_combinations()
elif exploration_strategy in ['core', 'pairwise']:
return self.__generate_pairwise_combinations()
else:
raise ValueError, 'Unknown exploration strategy: %s' % exploration_strategy
def __generate_exhaustive_combinations(self):
return [TestVector(vec) for vec in product(*self.__extract_vector_values()) if\
self.is_valid(vec)]
def __generate_pairwise_combinations(self):
import metacomm.combinatorics.all_pairs2
all_pairs = metacomm.combinatorics.all_pairs2.all_pairs2
# Pairwise fails if the number of inputs == 1. Use exhaustive in this case the
# results will be the same.
if len(self.dimensions) == 1:
return self.__generate_exhaustive_combinations()
return [TestVector(vec) for vec in all_pairs(self.__extract_vector_values(),
filter_func = self.is_valid)]
def add_constraint(self, constraint_func):
self.constraint_list.append(constraint_func)
def clear_constraints(self):
self.constraint_list = list()
def __extract_vector_values(self):
# The data is stored as a tuple of (name, [val1, val2, val3]). So extract the actual
# values from this
return [v[1] for v in self.dimensions.items()]
def is_valid(self, vector):
for constraint in self.constraint_list:
if (isinstance(vector, list) or isinstance(vector, tuple)) and\
len(vector) == len(self.dimensions):
valid = constraint(TestVector(vector))
if valid:
continue
return False
return True