mirror of
https://github.com/apache/impala.git
synced 2026-02-02 06:00:36 -05:00
This takes steps to make Python 2 behave like Python 3 as
a way to flush out issues with running on Python 3. Specifically,
it handles two main differences:
1. Python 3 requires absolute imports within packages. This
can be emulated via "from __future__ import absolute_import"
2. Python 3 changed division to "true" division that doesn't
round to an integer. This can be emulated via
"from __future__ import division"
This changes all Python files to add imports for absolute_import
and division. For completeness, this also includes print_function in the
import.
I scrutinized each old-division location and converted some locations
to use the integer division '//' operator if it needed an integer
result (e.g. for indices, counts of records, etc). Some code was also using
relative imports and needed to be adjusted to handle absolute_import.
This fixes all Pylint warnings about no-absolute-import and old-division,
and these warnings are now banned.
Testing:
- Ran core tests
Change-Id: Idb0fcbd11f3e8791f5951c4944be44fb580e576b
Reviewed-on: http://gerrit.cloudera.org:8080/19588
Reviewed-by: Joe McDonnell <joemcdonnell@cloudera.com>
Tested-by: Joe McDonnell <joemcdonnell@cloudera.com>
170 lines
6.6 KiB
Python
170 lines
6.6 KiB
Python
# Licensed to the Apache Software Foundation (ASF) under one
|
|
# or more contributor license agreements. See the NOTICE file
|
|
# distributed with this work for additional information
|
|
# regarding copyright ownership. The ASF licenses this file
|
|
# to you under the Apache License, Version 2.0 (the
|
|
# "License"); you may not use this file except in compliance
|
|
# with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
# A TextMatrix is used to generate a set of ImpalaTestVectors. The vectors that are
|
|
# generated are based on one or more ImpalaTestDimensions inputs. These lists define
|
|
# the set of values that are interesting to a test. For example, for file_format
|
|
# these might be 'seq', 'text', etc
|
|
#
|
|
# The ImpalaTestMatrix is then used to generate a set of ImpalaTestVectors. Each
|
|
# ImpalaTestVector contains a single value from each of the input ImpalaTestDimensions.
|
|
# An example:
|
|
#
|
|
# ImpalaTestMatrix.add_dimension('file_format', 'seq', 'text')
|
|
# ImpalaTestMatrix.add_dimension('agg_func', 'min', 'max', 'sum')
|
|
# ImpalaTestMatrix.add_dimension('col_type', 'int', 'bool')
|
|
# test_vectors = ImpalaTestMatrix.generate_test_vectors(...)
|
|
#
|
|
# Would return a collection of ImpalaTestVectors, with each one containing a
|
|
# combination of file_format, agg_func, and col_type:
|
|
# seq, min, int
|
|
# text, max, bool
|
|
# ...
|
|
#
|
|
# A ImpalaTestVector is an object itself, and the 'get_value' function is used to
|
|
# extract the actual value from the ImpalaTestVector for this particular combination:
|
|
# test_vector = test_vectors[0]
|
|
# print test_vector.get_value('file_format')
|
|
#
|
|
# The combinations of ImpalaTestVectors generated can be done in two ways: pairwise
|
|
# and exhaustive. Pairwise provides a way to get good coverage and reduce the total
|
|
# number of combinations generated where exhaustive will generate all valid
|
|
# combinations.
|
|
#
|
|
# Finally, the ImpalaTestMatrix also provides a way to add constraints to the vectors
|
|
# that are generated. This is useful to filter out invalid combinations. These can
|
|
# be added before calling 'generate_test_vectors'. The constraint is a function that
|
|
# accepts a ImpalaTestVector object and returns true if the vector is valid, false
|
|
# otherwise. For example, if we want to make sure 'bool' columns are not used with 'sum':
|
|
#
|
|
# ImpalaTestMatrix.add_constraint(lambda v:\
|
|
# not (v.get_value('col_type') == 'bool' and v.get_value('agg_func') == 'sum'))
|
|
#
|
|
# Additional examples of usage can be found within the test suites.
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
from itertools import product
|
|
|
|
# A list of test dimension values.
|
|
class ImpalaTestDimension(list):
|
|
def __init__(self, name, *args):
|
|
self.name = name
|
|
self.extend([ImpalaTestVector.Value(name, arg) for arg in args])
|
|
|
|
|
|
# A test vector that passed to test method. The ImpalaTestVector can be used to
|
|
# extract values for the specified dimension(s)
|
|
class ImpalaTestVector(object):
|
|
def __init__(self, vector_values):
|
|
self.vector_values = vector_values
|
|
|
|
def get_value_with_default(self, name, default_value):
|
|
for vector_value in self.vector_values:
|
|
if vector_value.name == name:
|
|
return vector_value.value
|
|
return default_value
|
|
|
|
def get_value(self, name):
|
|
for vector_value in self.vector_values:
|
|
if vector_value.name == name:
|
|
return vector_value.value
|
|
raise ValueError("Test vector does not contain value '%s'" % name)
|
|
|
|
def __str__(self):
|
|
return ' | '.join(['%s' % vector_value for vector_value in self.vector_values])
|
|
|
|
# Each value in a test vector is wrapped in the Value object. This wrapping is
|
|
# done internally so this object should never need to be created by the user.
|
|
class Value(object):
|
|
def __init__(self, name, value):
|
|
self.name = name
|
|
self.value = value
|
|
|
|
def __str__(self):
|
|
return '%s: %s' % (self.name, self.value)
|
|
|
|
|
|
# Matrix -> Collection of vectors
|
|
# Vector -> Call to get specific values
|
|
class ImpalaTestMatrix(object):
|
|
def __init__(self, *args):
|
|
self.dimensions = dict((arg.name, arg) for arg in args)
|
|
self.constraint_list = list()
|
|
|
|
def add_dimension(self, dimension):
|
|
self.dimensions[dimension.name] = dimension
|
|
|
|
def add_mandatory_exec_option(self, exec_option_key, exec_option_value):
|
|
for vector in self.dimensions['exec_option']:
|
|
vector.value[exec_option_key] = exec_option_value
|
|
|
|
def clear(self):
|
|
self.dimensions.clear()
|
|
|
|
def clear_dimension(self, dimension_name):
|
|
del self.dimensions[dimension_name]
|
|
|
|
def has_dimension(self, dimension_name):
|
|
return self.dimensions.has_key(dimension_name)
|
|
|
|
def generate_test_vectors(self, exploration_strategy):
|
|
if not self.dimensions:
|
|
return list()
|
|
# TODO: Check valid exploration strategies, provide more options for exploration
|
|
if exploration_strategy == 'exhaustive':
|
|
return self.__generate_exhaustive_combinations()
|
|
elif exploration_strategy in ['core', 'pairwise']:
|
|
return self.__generate_pairwise_combinations()
|
|
else:
|
|
raise ValueError('Unknown exploration strategy: %s' % exploration_strategy)
|
|
|
|
def __generate_exhaustive_combinations(self):
|
|
return [ImpalaTestVector(vec) for vec in product(*self.__extract_vector_values())
|
|
if self.is_valid(vec)]
|
|
|
|
def __generate_pairwise_combinations(self):
|
|
from allpairspy import AllPairs
|
|
all_pairs = AllPairs
|
|
|
|
# Pairwise fails if the number of inputs == 1. Use exhaustive in this case the
|
|
# results will be the same.
|
|
if len(self.dimensions) == 1:
|
|
return self.__generate_exhaustive_combinations()
|
|
return [ImpalaTestVector(vec) for vec in all_pairs(self.__extract_vector_values(),
|
|
filter_func = self.is_valid)]
|
|
|
|
def add_constraint(self, constraint_func):
|
|
self.constraint_list.append(constraint_func)
|
|
|
|
def clear_constraints(self):
|
|
self.constraint_list = list()
|
|
|
|
def __extract_vector_values(self):
|
|
# The data is stored as a tuple of (name, [val1, val2, val3]). So extract the
|
|
# actual values from this
|
|
return [v[1] for v in self.dimensions.items()]
|
|
|
|
def is_valid(self, vector):
|
|
for constraint in self.constraint_list:
|
|
if (isinstance(vector, list) or isinstance(vector, tuple)) and\
|
|
len(vector) == len(self.dimensions):
|
|
valid = constraint(ImpalaTestVector(vector))
|
|
if valid:
|
|
continue
|
|
return False
|
|
return True
|