mirror of
https://github.com/apache/impala.git
synced 2025-12-30 03:01:44 -05:00
Change-Id: Ib82884d5f56c520712c4391b53b799d518d6a54f Reviewed-on: http://gerrit.cloudera.org:8080/10052 Reviewed-by: Alex Rodoni <arodoni@cloudera.com> Tested-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
557 lines
23 KiB
XML
557 lines
23 KiB
XML
<?xml version="1.0" encoding="UTF-8"?>
|
|
<!--
|
|
Licensed to the Apache Software Foundation (ASF) under one
|
|
or more contributor license agreements. See the NOTICE file
|
|
distributed with this work for additional information
|
|
regarding copyright ownership. The ASF licenses this file
|
|
to you under the Apache License, Version 2.0 (the
|
|
"License"); you may not use this file except in compliance
|
|
with the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing,
|
|
software distributed under the License is distributed on an
|
|
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations
|
|
under the License.
|
|
-->
|
|
<!DOCTYPE concept PUBLIC "-//OASIS//DTD DITA Concept//EN" "concept.dtd">
|
|
<concept id="timestamp">
|
|
|
|
<title>TIMESTAMP Data Type</title>
|
|
|
|
<titlealts audience="PDF">
|
|
|
|
<navtitle>TIMESTAMP</navtitle>
|
|
|
|
</titlealts>
|
|
|
|
<prolog>
|
|
<metadata>
|
|
<data name="Category" value="Impala"/>
|
|
<data name="Category" value="Impala Data Types"/>
|
|
<data name="Category" value="SQL"/>
|
|
<data name="Category" value="Data Analysts"/>
|
|
<data name="Category" value="Developers"/>
|
|
<data name="Category" value="Dates and Times"/>
|
|
</metadata>
|
|
</prolog>
|
|
|
|
<conbody>
|
|
|
|
<p>
|
|
A data type used in <codeph>CREATE TABLE</codeph> and <codeph>ALTER TABLE</codeph>
|
|
statements, representing a point in time.
|
|
</p>
|
|
|
|
<p conref="../shared/impala_common.xml#common/syntax_blurb"/>
|
|
|
|
<p>
|
|
In the column definition of a <codeph>CREATE TABLE</codeph> statement:
|
|
</p>
|
|
|
|
<codeblock><varname>column_name</varname> TIMESTAMP</codeblock>
|
|
|
|
<p>
|
|
<b>Range:</b> Allowed date values range from 1400-01-01 to 9999-12-31; this range is
|
|
different from the Hive <codeph>TIMESTAMP</codeph> type. Internally, the resolution of the
|
|
time portion of a <codeph>TIMESTAMP</codeph> value is in nanoseconds.
|
|
</p>
|
|
|
|
<p>
|
|
<b>INTERVAL expressions:</b>
|
|
</p>
|
|
|
|
<p>
|
|
You can perform date arithmetic by adding or subtracting a specified number of time units,
|
|
using the <codeph>INTERVAL</codeph> keyword and the <codeph>+</codeph> and
|
|
<codeph>-</codeph> operators or <codeph>date_add()</codeph> and
|
|
<codeph>date_sub()</codeph> functions. You can specify units as <codeph>YEAR[S]</codeph>,
|
|
<codeph>MONTH[S]</codeph>, <codeph>WEEK[S]</codeph>, <codeph>DAY[S]</codeph>,
|
|
<codeph>HOUR[S]</codeph>, <codeph>MINUTE[S]</codeph>, <codeph>SECOND[S]</codeph>,
|
|
<codeph>MILLISECOND[S]</codeph>, <codeph>MICROSECOND[S]</codeph>, and
|
|
<codeph>NANOSECOND[S]</codeph>. You can only specify one time unit in each interval
|
|
expression, for example <codeph>INTERVAL 3 DAYS</codeph> or <codeph>INTERVAL 25
|
|
HOURS</codeph>, but you can produce any granularity by adding together successive
|
|
<codeph>INTERVAL</codeph> values, such as <codeph><varname>timestamp_value</varname> +
|
|
INTERVAL 3 WEEKS - INTERVAL 1 DAY + INTERVAL 10 MICROSECONDS</codeph>.
|
|
</p>
|
|
|
|
<p>
|
|
For example:
|
|
</p>
|
|
|
|
<codeblock>select now() + interval 1 day;
|
|
select date_sub(now(), interval 5 minutes);
|
|
insert into auction_details
|
|
select auction_id, auction_start_time, auction_start_time + interval 2 days + interval 12 hours
|
|
from new_auctions;</codeblock>
|
|
|
|
<p>
|
|
<b>Time zones:</b>
|
|
</p>
|
|
|
|
<p>
|
|
By default, Impala does not store timestamps using the local timezone, to avoid undesired
|
|
results from unexpected time zone issues. Timestamps are stored and interpreted relative
|
|
to UTC, both when written to or read from data files, or when converted to or from Unix
|
|
time values through functions such as <codeph>from_unixtime()</codeph> or
|
|
<codeph>unix_timestamp()</codeph>. To convert such a <codeph>TIMESTAMP</codeph> value to
|
|
one that represents the date and time in a specific time zone, convert the original value
|
|
with the <codeph>from_utc_timestamp()</codeph> function.
|
|
</p>
|
|
|
|
<p>
|
|
Because Impala does not assume that <codeph>TIMESTAMP</codeph> values are in any
|
|
particular time zone, you must be conscious of the time zone aspects of data that you
|
|
query, insert, or convert.
|
|
</p>
|
|
|
|
<p>
|
|
For consistency with Unix system calls, the <codeph>TIMESTAMP</codeph> returned by the
|
|
<codeph>now()</codeph> function represents the local time in the system time zone, rather
|
|
than in UTC. To store values relative to the current time in a portable way, convert any
|
|
<codeph>now()</codeph> return values using the <codeph>to_utc_timestamp()</codeph>
|
|
function first. For example, the following example shows that the current time in
|
|
California (where this Impala cluster is located) is shortly after 2 PM. If that value was
|
|
written to a data file, and shipped off to a distant server to be analyzed alongside other
|
|
data from far-flung locations, the dates and times would not match up precisely because of
|
|
time zone differences. Therefore, the <codeph>to_utc_timestamp()</codeph> function
|
|
converts it using a common reference point, the UTC time zone (descended from the old
|
|
Greenwich Mean Time standard). The <codeph>'PDT'</codeph> argument indicates that the
|
|
original value is from the Pacific time zone with Daylight Saving Time in effect. When
|
|
servers in all geographic locations run the same transformation on any local date and time
|
|
values (with the appropriate time zone argument), the stored data uses a consistent
|
|
representation. Impala queries can use functions such as <codeph>EXTRACT()</codeph>,
|
|
<codeph>MIN()</codeph>, <codeph>AVG()</codeph>, and so on to do time-series analysis on
|
|
those timestamps.
|
|
</p>
|
|
|
|
<codeblock>[localhost:21000] > select now();
|
|
+-------------------------------+
|
|
| now() |
|
|
+-------------------------------+
|
|
| 2015-04-09 14:07:46.580465000 |
|
|
+-------------------------------+
|
|
[localhost:21000] > select to_utc_timestamp(now(), 'PDT');
|
|
+--------------------------------+
|
|
| to_utc_timestamp(now(), 'pdt') |
|
|
+--------------------------------+
|
|
| 2015-04-09 21:08:07.664547000 |
|
|
+--------------------------------+
|
|
</codeblock>
|
|
|
|
<p>
|
|
The converse function, <codeph>from_utc_timestamp()</codeph>, lets you take stored
|
|
<codeph>TIMESTAMP</codeph> data or calculated results and convert back to local date and
|
|
time for processing on the application side. The following example shows how you might
|
|
represent some future date (such as the ending date and time of an auction) in UTC, and
|
|
then convert back to local time when convenient for reporting or other processing. The
|
|
final query in the example tests whether this arbitrary UTC date and time has passed yet,
|
|
by converting it back to the local time zone and comparing it against the current date and
|
|
time.
|
|
</p>
|
|
|
|
<codeblock>[localhost:21000] > select to_utc_timestamp(now() + interval 2 weeks, 'PDT');
|
|
+---------------------------------------------------+
|
|
| to_utc_timestamp(now() + interval 2 weeks, 'pdt') |
|
|
+---------------------------------------------------+
|
|
| 2015-04-23 21:08:34.152923000 |
|
|
+---------------------------------------------------+
|
|
[localhost:21000] > select from_utc_timestamp('2015-04-23 21:08:34.152923000','PDT');
|
|
+------------------------------------------------------------+
|
|
| from_utc_timestamp('2015-04-23 21:08:34.152923000', 'pdt') |
|
|
+------------------------------------------------------------+
|
|
| 2015-04-23 14:08:34.152923000 |
|
|
+------------------------------------------------------------+
|
|
[localhost:21000] > select from_utc_timestamp('2015-04-23 21:08:34.152923000','PDT') < now();
|
|
+--------------------------------------------------------------------+
|
|
| from_utc_timestamp('2015-04-23 21:08:34.152923000', 'pdt') < now() |
|
|
+--------------------------------------------------------------------+
|
|
| false |
|
|
+--------------------------------------------------------------------+
|
|
</codeblock>
|
|
|
|
<p rev="2.2.0">
|
|
If you have data files written by Hive, those <codeph>TIMESTAMP</codeph> values represent
|
|
the local timezone of the host where the data was written, potentially leading to
|
|
inconsistent results when processed by Impala. To avoid compatibility problems or having
|
|
to code workarounds, you can specify one or both of these <cmdname>impalad</cmdname>
|
|
startup flags: <codeph>--use_local_tz_for_unix_timestamp_conversions=true</codeph>
|
|
<codeph>-convert_legacy_hive_parquet_utc_timestamps=true</codeph>. Although
|
|
<codeph>-convert_legacy_hive_parquet_utc_timestamps</codeph> is turned off by default to
|
|
avoid performance overhead, where practical turn it on when processing
|
|
<codeph>TIMESTAMP</codeph> columns in Parquet files written by Hive, to avoid unexpected
|
|
behavior.
|
|
</p>
|
|
|
|
<p rev="2.2.0">
|
|
The <codeph>--use_local_tz_for_unix_timestamp_conversions</codeph> setting affects
|
|
conversions from <codeph>TIMESTAMP</codeph> to <codeph>BIGINT</codeph>, or from
|
|
<codeph>BIGINT</codeph> to <codeph>TIMESTAMP</codeph>. By default, Impala treats all
|
|
<codeph>TIMESTAMP</codeph> values as UTC, to simplify analysis of time-series data from
|
|
different geographic regions. When you enable the
|
|
<codeph>--use_local_tz_for_unix_timestamp_conversions</codeph> setting, these operations
|
|
treat the input values as if they are in the local tie zone of the host doing the
|
|
processing. See <xref
|
|
href="impala_datetime_functions.xml#datetime_functions"/>
|
|
for the list of functions affected by the
|
|
<codeph>--use_local_tz_for_unix_timestamp_conversions</codeph> setting.
|
|
</p>
|
|
|
|
<p>
|
|
The following sequence of examples shows how the interpretation of
|
|
<codeph>TIMESTAMP</codeph> values in Parquet tables is affected by the setting of the
|
|
<codeph>-convert_legacy_hive_parquet_utc_timestamps</codeph> setting.
|
|
</p>
|
|
|
|
<p>
|
|
Regardless of the <codeph>-convert_legacy_hive_parquet_utc_timestamps</codeph> setting,
|
|
<codeph>TIMESTAMP</codeph> columns in text tables can be written and read interchangeably
|
|
by Impala and Hive:
|
|
</p>
|
|
|
|
<codeblock>Impala DDL and queries for text table:
|
|
|
|
[localhost:21000] > create table t1 (x timestamp);
|
|
[localhost:21000] > insert into t1 values (now()), (now() + interval 1 day);
|
|
[localhost:21000] > select x from t1;
|
|
+-------------------------------+
|
|
| x |
|
|
+-------------------------------+
|
|
| 2015-04-07 15:43:02.892403000 |
|
|
| 2015-04-08 15:43:02.892403000 |
|
|
+-------------------------------+
|
|
[localhost:21000] > select to_utc_timestamp(x, 'PDT') from t1;
|
|
+-------------------------------+
|
|
| to_utc_timestamp(x, 'pdt') |
|
|
+-------------------------------+
|
|
| 2015-04-07 22:43:02.892403000 |
|
|
| 2015-04-08 22:43:02.892403000 |
|
|
+-------------------------------+
|
|
|
|
Hive query for text table:
|
|
|
|
hive> select * from t1;
|
|
OK
|
|
2015-04-07 15:43:02.892403
|
|
2015-04-08 15:43:02.892403
|
|
Time taken: 1.245 seconds, Fetched: 2 row(s)
|
|
</codeblock>
|
|
|
|
<p>
|
|
When the table uses Parquet format, Impala expects any time zone adjustment to be applied
|
|
prior to writing, while <codeph>TIMESTAMP</codeph> values written by Hive are adjusted to
|
|
be in the UTC time zone. When Hive queries Parquet data files that it wrote, it adjusts
|
|
the <codeph>TIMESTAMP</codeph> values back to the local time zone, while Impala does no
|
|
conversion. Hive does no time zone conversion when it queries Impala-written Parquet
|
|
files.
|
|
</p>
|
|
|
|
<codeblock>Impala DDL and queries for Parquet table:
|
|
|
|
[localhost:21000] > create table p1 stored as parquet as select x from t1;
|
|
+-------------------+
|
|
| summary |
|
|
+-------------------+
|
|
| Inserted 2 row(s) |
|
|
+-------------------+
|
|
[localhost:21000] > select x from p1;
|
|
+-------------------------------+
|
|
| x |
|
|
+-------------------------------+
|
|
| 2015-04-07 15:43:02.892403000 |
|
|
| 2015-04-08 15:43:02.892403000 |
|
|
+-------------------------------+
|
|
|
|
Hive DDL and queries for Parquet table:
|
|
|
|
hive> create table h1 (x timestamp) stored as parquet;
|
|
OK
|
|
hive> insert into h1 select * from p1;
|
|
...
|
|
OK
|
|
Time taken: 35.573 seconds
|
|
hive> select x from p1;
|
|
OK
|
|
2015-04-07 15:43:02.892403
|
|
2015-04-08 15:43:02.892403
|
|
Time taken: 0.324 seconds, Fetched: 2 row(s)
|
|
hive> select x from h1;
|
|
OK
|
|
2015-04-07 15:43:02.892403
|
|
2015-04-08 15:43:02.892403
|
|
Time taken: 0.197 seconds, Fetched: 2 row(s)
|
|
</codeblock>
|
|
|
|
<p>
|
|
The discrepancy arises when Impala queries the Hive-created Parquet table. The underlying
|
|
values in the <codeph>TIMESTAMP</codeph> column are different from the ones written by
|
|
Impala, even though they were copied from one table to another by an <codeph>INSERT ...
|
|
SELECT</codeph> statement in Hive. Hive did an implicit conversion from the local time
|
|
zone to UTC as it wrote the values to Parquet.
|
|
</p>
|
|
|
|
<codeblock>Impala query for TIMESTAMP values from Impala-written and Hive-written data:
|
|
|
|
[localhost:21000] > select * from p1;
|
|
+-------------------------------+
|
|
| x |
|
|
+-------------------------------+
|
|
| 2015-04-07 15:43:02.892403000 |
|
|
| 2015-04-08 15:43:02.892403000 |
|
|
+-------------------------------+
|
|
Fetched 2 row(s) in 0.29s
|
|
[localhost:21000] > select * from h1;
|
|
+-------------------------------+
|
|
| x |
|
|
+-------------------------------+
|
|
| 2015-04-07 22:43:02.892403000 |
|
|
| 2015-04-08 22:43:02.892403000 |
|
|
+-------------------------------+
|
|
Fetched 2 row(s) in 0.41s
|
|
|
|
Underlying integer values for Impala-written and Hive-written data:
|
|
|
|
[localhost:21000] > select cast(x as bigint) from p1;
|
|
+-------------------+
|
|
| cast(x as bigint) |
|
|
+-------------------+
|
|
| 1428421382 |
|
|
| 1428507782 |
|
|
+-------------------+
|
|
Fetched 2 row(s) in 0.38s
|
|
[localhost:21000] > select cast(x as bigint) from h1;
|
|
+-------------------+
|
|
| cast(x as bigint) |
|
|
+-------------------+
|
|
| 1428446582 |
|
|
| 1428532982 |
|
|
+-------------------+
|
|
Fetched 2 row(s) in 0.20s
|
|
</codeblock>
|
|
|
|
<p>
|
|
When the <codeph>-convert_legacy_hive_parquet_utc_timestamps</codeph> setting is enabled,
|
|
Impala recognizes the Parquet data files written by Hive, and applies the same
|
|
UTC-to-local-timezone conversion logic during the query as Hive uses, making the contents
|
|
of the Impala-written <codeph>P1</codeph> table and the Hive-written <codeph>H1</codeph>
|
|
table appear identical, whether represented as <codeph>TIMESTAMP</codeph> values or the
|
|
underlying <codeph>BIGINT</codeph> integers:
|
|
</p>
|
|
|
|
<codeblock>[localhost:21000] > select x from p1;
|
|
+-------------------------------+
|
|
| x |
|
|
+-------------------------------+
|
|
| 2015-04-07 15:43:02.892403000 |
|
|
| 2015-04-08 15:43:02.892403000 |
|
|
+-------------------------------+
|
|
Fetched 2 row(s) in 0.37s
|
|
[localhost:21000] > select x from h1;
|
|
+-------------------------------+
|
|
| x |
|
|
+-------------------------------+
|
|
| 2015-04-07 15:43:02.892403000 |
|
|
| 2015-04-08 15:43:02.892403000 |
|
|
+-------------------------------+
|
|
Fetched 2 row(s) in 0.19s
|
|
[localhost:21000] > select cast(x as bigint) from p1;
|
|
+-------------------+
|
|
| cast(x as bigint) |
|
|
+-------------------+
|
|
| 1428446582 |
|
|
| 1428532982 |
|
|
+-------------------+
|
|
Fetched 2 row(s) in 0.29s
|
|
[localhost:21000] > select cast(x as bigint) from h1;
|
|
+-------------------+
|
|
| cast(x as bigint) |
|
|
+-------------------+
|
|
| 1428446582 |
|
|
| 1428532982 |
|
|
+-------------------+
|
|
Fetched 2 row(s) in 0.22s
|
|
</codeblock>
|
|
|
|
<p>
|
|
<b>Conversions:</b>
|
|
</p>
|
|
|
|
<p conref="../shared/impala_common.xml#common/timestamp_conversions"
|
|
conrefend="../shared/impala_common.xml#common/cast_string_to_timestamp"/>
|
|
|
|
<p>
|
|
<ph conref="../shared/impala_common.xml#common/cast_int_to_timestamp"/>
|
|
</p>
|
|
|
|
<p>
|
|
In Impala 1.3 and higher, the <codeph>FROM_UNIXTIME()</codeph> and
|
|
<codeph>UNIX_TIMESTAMP()</codeph> functions allow a wider range of format strings, with
|
|
more flexibility in element order, repetition of letter placeholders, and separator
|
|
characters. In <keyword
|
|
keyref="impala23_full"/> and higher, the
|
|
<codeph>UNIX_TIMESTAMP()</codeph> function also allows a numeric timezone offset to be
|
|
specified as part of the input string. See
|
|
<xref
|
|
href="impala_datetime_functions.xml#datetime_functions"/> for details.
|
|
</p>
|
|
|
|
<p conref="../shared/impala_common.xml#common/y2k38"/>
|
|
|
|
<p>
|
|
<b>Partitioning:</b>
|
|
</p>
|
|
|
|
<p>
|
|
Although you cannot use a <codeph>TIMESTAMP</codeph> column as a partition key, you can
|
|
extract the individual years, months, days, hours, and so on and partition based on those
|
|
columns. Because the partition key column values are represented in HDFS directory names,
|
|
rather than as fields in the data files themselves, you can also keep the original
|
|
<codeph>TIMESTAMP</codeph> values if desired, without duplicating data or wasting storage
|
|
space. See <xref
|
|
href="impala_partitioning.xml#partition_key_columns"/> for more
|
|
details on partitioning with date and time values.
|
|
</p>
|
|
|
|
<codeblock>[localhost:21000] > create table timeline (event string) partitioned by (happened timestamp);
|
|
ERROR: AnalysisException: Type 'TIMESTAMP' is not supported as partition-column type in column: happened
|
|
</codeblock>
|
|
|
|
<p conref="../shared/impala_common.xml#common/null_bad_timestamp_cast"/>
|
|
|
|
<p conref="../shared/impala_common.xml#common/partitioning_worrisome"/>
|
|
|
|
<p conref="../shared/impala_common.xml#common/hbase_ok"/>
|
|
|
|
<p conref="../shared/impala_common.xml#common/parquet_ok"/>
|
|
|
|
<p conref="../shared/impala_common.xml#common/text_bulky"/>
|
|
|
|
<!-- <p conref="../shared/impala_common.xml#common/compatibility_blurb"/> -->
|
|
|
|
<p conref="../shared/impala_common.xml#common/internals_16_bytes"/>
|
|
|
|
<p conref="../shared/impala_common.xml#common/added_forever"/>
|
|
|
|
<p conref="../shared/impala_common.xml#common/column_stats_constant"/>
|
|
|
|
<p conref="../shared/impala_common.xml#common/sqoop_blurb"/>
|
|
|
|
<p conref="../shared/impala_common.xml#common/sqoop_timestamp_caveat"/>
|
|
|
|
<p conref="../shared/impala_common.xml#common/restrictions_blurb"/>
|
|
|
|
<p>
|
|
If you cast a <codeph>STRING</codeph> with an unrecognized format to a
|
|
<codeph>TIMESTAMP</codeph>, the result is <codeph>NULL</codeph> rather than an error. Make
|
|
sure to test your data pipeline to be sure any textual date and time values are in a
|
|
format that Impala <codeph>TIMESTAMP</codeph> can recognize.
|
|
</p>
|
|
|
|
<p conref="../shared/impala_common.xml#common/avro_no_timestamp"/>
|
|
|
|
<p conref="../shared/impala_common.xml#common/kudu_blurb"/>
|
|
|
|
<p conref="../shared/impala_common.xml#common/kudu_timestamp_details"/>
|
|
|
|
<p conref="../shared/impala_common.xml#common/example_blurb"/>
|
|
|
|
<p>
|
|
The following examples demonstrate using <codeph>TIMESTAMP</codeph> values with built-in
|
|
functions:
|
|
</p>
|
|
|
|
<codeblock>select cast('1966-07-30' as timestamp);
|
|
select cast('1985-09-25 17:45:30.005' as timestamp);
|
|
select cast('08:30:00' as timestamp);
|
|
select hour('1970-01-01 15:30:00'); -- Succeeds, returns 15.
|
|
select hour('1970-01-01 15:30'); -- Returns NULL because seconds field required.
|
|
select hour('1970-01-01 27:30:00'); -- Returns NULL because hour value out of range.
|
|
select dayofweek('2004-06-13'); -- Returns 1, representing Sunday.
|
|
select dayname('2004-06-13'); -- Returns 'Sunday'.
|
|
select date_add('2004-06-13', 365); -- Returns 2005-06-13 with zeros for hh:mm:ss fields.
|
|
select day('2004-06-13'); -- Returns 13.
|
|
select datediff('1989-12-31','1984-09-01'); -- How many days between these 2 dates?
|
|
select now(); -- Returns current date and time in local timezone.
|
|
</codeblock>
|
|
|
|
<p>
|
|
The following examples demonstrate using <codeph>TIMESTAMP</codeph> values with
|
|
HDFS-backed tables:
|
|
</p>
|
|
|
|
<codeblock>create table dates_and_times (t timestamp);
|
|
insert into dates_and_times values
|
|
('1966-07-30'), ('1985-09-25 17:45:30.005'), ('08:30:00'), (now());
|
|
</codeblock>
|
|
|
|
<p rev="IMPALA-5137">
|
|
The following examples demonstrate using <codeph>TIMESTAMP</codeph> values with Kudu
|
|
tables:
|
|
</p>
|
|
|
|
<codeblock rev="IMPALA-5137">create table timestamp_t (x int primary key, s string, t timestamp, b bigint)
|
|
partition by hash (x) partitions 16
|
|
stored as kudu;
|
|
|
|
-- The default value of now() has microsecond precision, so the final 3 digits
|
|
-- representing nanoseconds are all zero.
|
|
insert into timestamp_t values (1, cast(now() as string), now(), unix_timestamp(now()));
|
|
|
|
-- Values with 1-499 nanoseconds are rounded down in the Kudu TIMESTAMP column.
|
|
insert into timestamp_t values (2, cast(now() + interval 100 nanoseconds as string), now() + interval 100 nanoseconds, unix_timestamp(now() + interval 100 nanoseconds));
|
|
insert into timestamp_t values (3, cast(now() + interval 499 nanoseconds as string), now() + interval 499 nanoseconds, unix_timestamp(now() + interval 499 nanoseconds));
|
|
|
|
-- Values with 500-999 nanoseconds are rounded up in the Kudu TIMESTAMP column.
|
|
insert into timestamp_t values (4, cast(now() + interval 500 nanoseconds as string), now() + interval 500 nanoseconds, unix_timestamp(now() + interval 500 nanoseconds));
|
|
insert into timestamp_t values (5, cast(now() + interval 501 nanoseconds as string), now() + interval 501 nanoseconds, unix_timestamp(now() + interval 501 nanoseconds));
|
|
|
|
-- The string representation shows how underlying Impala TIMESTAMP can have nanosecond precision.
|
|
-- The TIMESTAMP column shows how timestamps in a Kudu table are rounded to microsecond precision.
|
|
-- The BIGINT column represents seconds past the epoch and so if not affected much by nanoseconds.
|
|
select s, t, b from timestamp_t order by t;
|
|
+-------------------------------+-------------------------------+------------+
|
|
| s | t | b |
|
|
+-------------------------------+-------------------------------+------------+
|
|
| 2017-05-31 15:30:05.107157000 | 2017-05-31 15:30:05.107157000 | 1496244605 |
|
|
| 2017-05-31 15:30:28.868151100 | 2017-05-31 15:30:28.868151000 | 1496244628 |
|
|
| 2017-05-31 15:34:33.674692499 | 2017-05-31 15:34:33.674692000 | 1496244873 |
|
|
| 2017-05-31 15:35:04.769166500 | 2017-05-31 15:35:04.769167000 | 1496244904 |
|
|
| 2017-05-31 15:35:33.033082501 | 2017-05-31 15:35:33.033083000 | 1496244933 |
|
|
+-------------------------------+-------------------------------+------------+
|
|
</codeblock>
|
|
|
|
<p conref="../shared/impala_common.xml#common/related_info"/>
|
|
|
|
<ul>
|
|
<li>
|
|
<!-- The Timestamp Literals topic is pretty brief. Consider adding more examples there. -->
|
|
<xref href="impala_literals.xml#timestamp_literals"/>.
|
|
</li>
|
|
|
|
<li>
|
|
To convert to or from different date formats, or perform date arithmetic, use the date
|
|
and time functions described in
|
|
<xref
|
|
href="impala_datetime_functions.xml#datetime_functions"/>. In
|
|
particular, the <codeph>from_unixtime()</codeph> function requires a case-sensitive
|
|
format string such as <codeph>"yyyy-MM-dd HH:mm:ss.SSSS"</codeph>, matching one of the
|
|
allowed variations of a <codeph>TIMESTAMP</codeph> value (date plus time, only date,
|
|
only time, optional fractional seconds).
|
|
</li>
|
|
|
|
<li>
|
|
See <xref href="impala_langref_unsupported.xml#langref_hiveql_delta"
|
|
/> for
|
|
details about differences in <codeph>TIMESTAMP</codeph> handling between Impala and
|
|
Hive.
|
|
</li>
|
|
</ul>
|
|
|
|
</conbody>
|
|
|
|
</concept>
|