mirror of
https://github.com/apache/impala.git
synced 2026-01-01 09:00:42 -05:00
Previously Impala disallowed LOAD DATA and INSERT on S3. This patch functionally enables LOAD DATA and INSERT on S3 without making major changes for the sake of improving performance over S3. This patch also enables both INSERT and LOAD DATA between file systems. S3 does not support the rename operation, so the staged files in S3 are copied instead of renamed, which contributes to the slow performance on S3. The FinalizeSuccessfulInsert() function now does not make any underlying assumptions of the filesystem it is on and works across all supported filesystems. This is done by adding a full URI field to the base directory for a partition in the TInsertPartitionStatus. Also, the HdfsOp class now does not assume a single filesystem and gets connections to the filesystems based on the URI of the file it is operating on. Added a python S3 client called 'boto3' to access S3 from the python tests. A new class called S3Client is introduced which creates wrappers around the boto3 functions and have the same function signatures as PyWebHdfsClient by deriving from a base abstract class BaseFileSystem so that they can be interchangeably through a 'generic_client'. test_load.py is refactored to use this generic client. The ImpalaTestSuite setup creates a client according to the TARGET_FILESYSTEM environment variable and assigns it to the 'generic_client'. P.S: Currently, the test_load.py runs 4x slower on S3 than on HDFS. Performance needs to be improved in future patches. INSERT performance is slower than on HDFS too. This is mainly because of an extra copy that happens between staging and the final location of a file. However, larger INSERTs come closer to HDFS permformance than smaller inserts. ACLs are not taken care of for S3 in this patch. It is something that still needs to be discussed before implementing. Change-Id: I94e15ad67752dce21c9b7c1dced6e114905a942d Reviewed-on: http://gerrit.cloudera.org:8080/2574 Reviewed-by: Sailesh Mukil <sailesh@cloudera.com> Tested-by: Internal Jenkins
189 lines
8.3 KiB
Python
189 lines
8.3 KiB
Python
# Copyright (c) 2012 Cloudera, Inc. All rights reserved.
|
|
# Validates all aggregate functions across all datatypes
|
|
#
|
|
import logging
|
|
import pytest
|
|
from tests.common.test_vector import *
|
|
from tests.common.impala_test_suite import ImpalaTestSuite
|
|
from tests.common.test_dimensions import create_exec_option_dimension
|
|
from tests.common.test_dimensions import create_uncompressed_text_dimension
|
|
from tests.common.skip import SkipIfOldAggsJoins, SkipIfS3
|
|
from tests.util.test_file_parser import QueryTestSectionReader
|
|
|
|
agg_functions = ['sum', 'count', 'min', 'max', 'avg']
|
|
|
|
data_types = ['int', 'bool', 'double', 'bigint', 'tinyint',
|
|
'smallint', 'float', 'timestamp']
|
|
|
|
result_lut = {
|
|
# TODO: Add verification for other types
|
|
'sum-tinyint': 45000, 'avg-tinyint': 5, 'count-tinyint': 9000,
|
|
'min-tinyint': 1, 'max-tinyint': 9,
|
|
'sum-smallint': 495000, 'avg-smallint': 50, 'count-smallint': 9900,
|
|
'min-smallint': 1, 'max-smallint': 99,
|
|
'sum-int': 4995000, 'avg-int': 500, 'count-int': 9990,
|
|
'min-int': 1, 'max-int': 999,
|
|
'sum-bigint': 49950000, 'avg-bigint': 5000, 'count-bigint': 9990,
|
|
'min-bigint': 10, 'max-bigint': 9990,
|
|
}
|
|
|
|
class TestAggregation(ImpalaTestSuite):
|
|
@classmethod
|
|
def get_workload(self):
|
|
return 'functional-query'
|
|
|
|
@classmethod
|
|
def add_test_dimensions(cls):
|
|
super(TestAggregation, cls).add_test_dimensions()
|
|
|
|
# Add two more dimensions
|
|
cls.TestMatrix.add_dimension(TestDimension('agg_func', *agg_functions))
|
|
cls.TestMatrix.add_dimension(TestDimension('data_type', *data_types))
|
|
cls.TestMatrix.add_constraint(lambda v: cls.is_valid_vector(v))
|
|
|
|
@classmethod
|
|
def is_valid_vector(cls, vector):
|
|
data_type, agg_func = vector.get_value('data_type'), vector.get_value('agg_func')
|
|
file_format = vector.get_value('table_format').file_format
|
|
if file_format not in ['parquet']: return False
|
|
|
|
if cls.exploration_strategy() == 'core':
|
|
# Reduce execution time when exploration strategy is 'core'
|
|
if vector.get_value('exec_option')['batch_size'] != 0: return False
|
|
|
|
# Avro doesn't have timestamp type
|
|
if file_format == 'avro' and data_type == 'timestamp':
|
|
return False
|
|
elif agg_func not in ['min', 'max', 'count'] and data_type == 'bool':
|
|
return False
|
|
elif agg_func == 'sum' and data_type == 'timestamp':
|
|
return False
|
|
return True
|
|
|
|
def test_aggregation(self, vector):
|
|
data_type, agg_func = (vector.get_value('data_type'), vector.get_value('agg_func'))
|
|
query = 'select %s(%s_col) from alltypesagg where day is not null' % (agg_func,
|
|
data_type)
|
|
result = self.execute_scalar(query, vector.get_value('exec_option'),
|
|
table_format=vector.get_value('table_format'))
|
|
if 'int' in data_type:
|
|
assert result_lut['%s-%s' % (agg_func, data_type)] == int(result)
|
|
|
|
# AVG
|
|
if vector.get_value('data_type') == 'timestamp' and\
|
|
vector.get_value('agg_func') == 'avg':
|
|
return
|
|
query = 'select %s(DISTINCT(%s_col)) from alltypesagg where day is not null' % (
|
|
agg_func, data_type)
|
|
result = self.execute_scalar(query, vector.get_value('exec_option'))
|
|
|
|
class TestAggregationQueries(ImpalaTestSuite):
|
|
"""Run the aggregation test suite, with codegen enabled and disabled, to exercise our
|
|
non-codegen code"""
|
|
@classmethod
|
|
def get_workload(self):
|
|
return 'functional-query'
|
|
|
|
@classmethod
|
|
def add_test_dimensions(cls):
|
|
super(TestAggregationQueries, cls).add_test_dimensions()
|
|
|
|
cls.TestMatrix.add_dimension(
|
|
create_exec_option_dimension(disable_codegen_options=[False, True]))
|
|
|
|
if cls.exploration_strategy() == 'core':
|
|
cls.TestMatrix.add_dimension(create_uncompressed_text_dimension(cls.get_workload()))
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_non_codegen_tinyint_grouping(self, vector):
|
|
# Regression for IMPALA-901. The test includes an INSERT statement, so can only be run
|
|
# on INSERT-able formats - text only in this case, since the bug doesn't depend on the
|
|
# file format.
|
|
if vector.get_value('table_format').file_format == 'text' \
|
|
and vector.get_value('table_format').compression_codec == 'none':
|
|
self.run_test_case('QueryTest/aggregation_no_codegen_only', vector)
|
|
|
|
def test_aggregation(self, vector):
|
|
if vector.get_value('table_format').file_format == 'hbase':
|
|
pytest.xfail(reason="IMPALA-283 - select count(*) produces inconsistent results")
|
|
self.run_test_case('QueryTest/aggregation', vector)
|
|
|
|
def test_distinct(self, vector):
|
|
if vector.get_value('table_format').file_format == 'hbase':
|
|
pytest.xfail("HBase returns columns in alphabetical order for select distinct *, "
|
|
"making the result verication to fail.")
|
|
self.run_test_case('QueryTest/distinct', vector)
|
|
|
|
def test_group_concat(self, vector):
|
|
"""group_concat distinct tests
|
|
Required to run directly in python because the order in which results will be
|
|
merged at the final, single-node aggregation step is non-deterministic (if the
|
|
first phase is running on multiple nodes). Need to pull the result apart and
|
|
compare the actual items)"""
|
|
exec_option = vector.get_value('exec_option')
|
|
table_format = vector.get_value('table_format')
|
|
# Test group_concat distinct with other aggregate function and groupings.
|
|
# expected result is the row: 2010,'1, 2, 3, 4','1-2-3-4','2|3|1|4',40,4
|
|
query = """select year, group_concat(distinct string_col),
|
|
group_concat(distinct string_col, '-'), group_concat(distinct string_col, '|'),
|
|
count(string_col), count(distinct string_col)
|
|
from alltypesagg where int_col < 5 and year = 2010 group by year"""
|
|
result = self.execute_query(query, exec_option, table_format=table_format)
|
|
row = (result.data)[0].split("\t")
|
|
assert(len(row) == 6)
|
|
assert(row[0] == '2010')
|
|
delimiter = [', ', '-', '|']
|
|
for i in range(1, 4):
|
|
assert(set(row[i].split(delimiter[i-1])) == set(['1', '2', '3', '4']))
|
|
assert(row[4] == '40')
|
|
assert(row[5] == '4')
|
|
|
|
# Test group_concat distinct with arrow delimiter, with multiple rows
|
|
query = """select day, group_concat(distinct string_col, "->")
|
|
from (select * from alltypesagg where id % 100 = day order by id limit 99999) a
|
|
group by day order by day"""
|
|
result = self.execute_query(query, exec_option, table_format=table_format)
|
|
string_col = []
|
|
string_col.append(set(['1','101','201','301','401','501','601','701','801','901']))
|
|
string_col.append(set(['2','102','202','302','402','502','602','702','802','902']))
|
|
string_col.append(set(['3','103','203','303','403','503','603','703','803','903']))
|
|
string_col.append(set(['4','104','204','304','404','504','604','704','804','904']))
|
|
string_col.append(set(['5','105','205','305','405','505','605','705','805','905']))
|
|
string_col.append(set(['6','106','206','306','406','506','606','706','806','906']))
|
|
string_col.append(set(['7','107','207','307','407','507','607','707','807','907']))
|
|
string_col.append(set(['8','108','208','308','408','508','608','708','808','908']))
|
|
string_col.append(set(['9','109','209','309','409','509','609','709','809','909']))
|
|
string_col.append(set(['10','110','210','310','410','510','610','710','810','910']))
|
|
assert(len(result.data) == 10)
|
|
for i in range(10):
|
|
row = (result.data)[i].split("\t")
|
|
assert(len(row) == 2)
|
|
assert(row[0] == str(i+1))
|
|
assert(set(row[1].split("->")) == string_col[i])
|
|
|
|
# Test group_concat distinct with merge node
|
|
query = """select group_concat(distinct string_col, ' ') from alltypesagg
|
|
where int_col < 10"""
|
|
result = self.execute_query(query, exec_option, table_format=table_format)
|
|
assert(set((result.data)[0].split(" ")) == set(['1','2','3','4','5','6','7','8','9']))
|
|
|
|
class TestTPCHAggregationQueries(ImpalaTestSuite):
|
|
# Uses the TPC-H dataset in order to have larger aggregations.
|
|
|
|
@classmethod
|
|
def get_workload(cls):
|
|
return 'tpch'
|
|
|
|
@classmethod
|
|
def add_test_dimensions(cls):
|
|
super(TestTPCHAggregationQueries, cls).add_test_dimensions()
|
|
cls.TestMatrix.add_constraint(lambda v:\
|
|
v.get_value('table_format').file_format in ['parquet'])
|
|
|
|
def test_tpch_aggregations(self, vector):
|
|
self.run_test_case('tpch-aggregations', vector)
|
|
|
|
@SkipIfOldAggsJoins.passthrough_preagg
|
|
def test_tpch_passthrough_aggregations(self, vector):
|
|
self.run_test_case('tpch-passthrough-aggregations', vector)
|