mirror of
https://github.com/apache/impala.git
synced 2026-01-03 06:00:52 -05:00
Many python files had a hashbang and the executable bit set though they were not intended to be run a standalone script. That makes determining which python files are actually scripts very difficult. A future patch will update the hashbang in real python scripts so they use $IMPALA_HOME/bin/impala-python. Change-Id: I04eafdc73201feefe65b85817a00474e182ec2ba Reviewed-on: http://gerrit.cloudera.org:8080/599 Reviewed-by: Casey Ching <casey@cloudera.com> Reviewed-by: Taras Bobrovytsky <tbobrovytsky@cloudera.com> Tested-by: Internal Jenkins
162 lines
7.3 KiB
Python
162 lines
7.3 KiB
Python
# Copyright (c) 2014 Cloudera, Inc. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Validates that casting to Decimal works.
|
|
#
|
|
import logging
|
|
import pytest
|
|
from decimal import Decimal, getcontext, ROUND_DOWN
|
|
from metacomm.combinatorics.all_pairs2 import all_pairs2 as all_pairs
|
|
from random import shuffle, randint, seed
|
|
from tests.beeswax.impala_beeswax import ImpalaBeeswaxException
|
|
from tests.common.impala_test_suite import ImpalaTestSuite
|
|
from tests.common.test_vector import TestDimension, TestMatrix
|
|
|
|
class TestDecimalCasting(ImpalaTestSuite):
|
|
"""Test Suite to verify that casting to Decimal works.
|
|
|
|
Specifically, this test suite ensures that:
|
|
- overflows and underflows and handled correctly.
|
|
- casts from floats/string to their exact decimal types are correct.
|
|
- max/min/NULL/0 can be expressed with their respective decimal types.
|
|
"""
|
|
DECIMAL_TYPES_MAP = {
|
|
# All possible decimal types.
|
|
# (0 < precision <= 38 && 0 <= scale <= 38 && scale <= precision)
|
|
'exhaustive' : [(p, s) for p in xrange(1, 39) for s in xrange(0, p + 1)],
|
|
# Core only deals with precision 6,16,26 (different integer types)
|
|
'core' : [(p, s) for p in [6,16,26] for s in xrange(0, p + 1)],
|
|
# mimics test_vectors.py and takes a subset of all decimal types
|
|
'pairwise' : all_pairs([(p, s) for p in xrange(1, 39) for s in xrange(0, p + 1)])
|
|
}
|
|
# We can cast for numerrics or string types.
|
|
CAST_FROM = ['string', 'number']
|
|
# Set the default precisin to 38 to operate on decimal values.
|
|
getcontext().prec = 38
|
|
# Represents a 0 in decimal
|
|
DECIMAL_ZERO = Decimal('0')
|
|
|
|
@classmethod
|
|
def get_workload(cls):
|
|
return 'functional-query'
|
|
|
|
@classmethod
|
|
def add_test_dimensions(cls):
|
|
cls.TestMatrix = TestMatrix()
|
|
cls.TestMatrix.add_dimension(TestDimension('decimal_type',
|
|
*TestDecimalCasting.DECIMAL_TYPES_MAP[cls.exploration_strategy()]))
|
|
cls.TestMatrix.add_dimension(
|
|
TestDimension('cast_from', *TestDecimalCasting.CAST_FROM))
|
|
cls.iterations = 1
|
|
|
|
def setup_method(self, method):
|
|
self.max_bigint = int(self.execute_scalar("select max_bigint()"))
|
|
|
|
def _gen_decimal_val(self, precision, scale):
|
|
"""Generates a Decimal object with the exact number of digits as the precision."""
|
|
# Generates numeric string which has as many digits as the precision.
|
|
num = str(randint(10**(precision - 1), int('9' * precision)))
|
|
# Incorporate scale into the string.
|
|
if scale != 0: num = "{0}.{1}".format(num[:-scale], num[precision - scale:])
|
|
# Convert the generated decimal string into a Decimal object and return a -ive/+ive
|
|
# version of it with equal probability.
|
|
return Decimal(num) if randint(0,1) else Decimal("-{0}".format(num))
|
|
|
|
def _assert_decimal_result(self, cast, actual, expected):
|
|
assert actual == expected, "Cast: {0}, Expected: {1}, Actual: {2}".format(cast,\
|
|
expected, actual)
|
|
|
|
def _normalize_cast_expr(self, decimal_val, scale, from_string=False):
|
|
"""Convert the decimal value to a string litetal to avoid overflow.
|
|
|
|
If an integer literal is greater than the max bigint supported by Impala, it
|
|
overflows. This methods replaces it with a string literal.
|
|
"""
|
|
if (scale == 0 and abs(decimal_val) > self.max_bigint) or from_string:
|
|
return "select cast('{0}' as Decimal({1}, {2}))"
|
|
return "select cast({0} as Decimal({1}, {2}))"
|
|
|
|
def test_min_max_zero_null(self, vector):
|
|
"""Sanity test at limits.
|
|
|
|
Verify that:
|
|
- We can read decimal values at their +ive and -ive limits.
|
|
- 0 is expressible in all decimal types.
|
|
- NULL is expressible in all decimal types
|
|
"""
|
|
precision, scale = vector.get_value('decimal_type')
|
|
from_string = vector.get_value('cast_from') == 'string'
|
|
dec_max = Decimal('{0}.{1}'.format('9' * (precision - scale), '9' * scale))
|
|
# Multiplying large values eith -1 can produce an overflow.
|
|
dec_min = Decimal('-{0}'.format(str(dec_max)))
|
|
cast = self._normalize_cast_expr(dec_max, scale, from_string=from_string)
|
|
# Test max
|
|
res = Decimal(self.execute_scalar(cast.format(dec_max, precision, scale)))
|
|
self._assert_decimal_result(cast, res, dec_max)
|
|
# Test Min
|
|
res = Decimal(self.execute_scalar(cast.format(dec_min, precision, scale)))
|
|
self._assert_decimal_result(cast, res, dec_min)
|
|
# Test zero
|
|
res = Decimal(self.execute_scalar(cast.format(TestDecimalCasting.DECIMAL_ZERO,
|
|
precision, scale)))
|
|
self._assert_decimal_result(cast, res, TestDecimalCasting.DECIMAL_ZERO)
|
|
# Test NULL
|
|
null_cast = "select cast(NULL as Decimal({0}, {1}))".format(precision, scale)
|
|
res = self.execute_scalar(null_cast)
|
|
self._assert_decimal_result(null_cast, res, 'NULL')
|
|
|
|
def test_exact(self, vector):
|
|
"""Test to verify that an exact representation of the desired Decimal type is
|
|
maintained."""
|
|
precision, scale = vector.get_value('decimal_type')
|
|
from_string = vector.get_value('cast_from') == 'string'
|
|
for i in xrange(self.iterations):
|
|
val = self._gen_decimal_val(precision, scale)
|
|
cast = self._normalize_cast_expr(val, scale, from_string=from_string)\
|
|
.format(val, precision, scale)
|
|
res = Decimal(self.execute_scalar(cast))
|
|
self._assert_decimal_result(cast, res, val)
|
|
|
|
def test_overflow(self, vector):
|
|
"""Test to verify that we always return NULL when trying to cast a number with greater
|
|
precision that its intended decimal type"""
|
|
precision, scale = vector.get_value('decimal_type')
|
|
from_string = vector.get_value('cast_from') == 'string'
|
|
for i in xrange(self.iterations):
|
|
# Generate a decimal with a larger precision than the one we're casting to.
|
|
val = self._gen_decimal_val(randint(precision + 1, 39), scale)
|
|
cast = self._normalize_cast_expr(val, scale, from_string=from_string)\
|
|
.format(val, precision, scale)
|
|
res = self.execute_scalar(cast)
|
|
self._assert_decimal_result(cast, res, 'NULL')
|
|
|
|
def test_underflow(self, vector):
|
|
"""Test to verify that we truncate when the scale of the number being cast is higher
|
|
than the target decimal type (with no change in precision).
|
|
"""
|
|
precision, scale = vector.get_value('decimal_type')
|
|
from_string = vector.get_value('cast_from') == 'string'
|
|
if precision == scale:
|
|
pytest.skip("Cannot underflow scale when precision and scale are equal")
|
|
for i in xrange(self.iterations):
|
|
new_scale = randint(scale + 1, precision)
|
|
val = self._gen_decimal_val(precision, randint(new_scale, precision))
|
|
# We don't need to normalize the cast expr because scale will never be zero
|
|
cast = self._normalize_cast_expr(val, scale, from_string=from_string)\
|
|
.format(val, precision, scale)
|
|
res = Decimal(self.execute_scalar(cast))
|
|
# Truncate the decimal value to its target scale with quantize.
|
|
self._assert_decimal_result(cast, res, val.quantize(Decimal('0e-%s' % scale),
|
|
rounding=ROUND_DOWN))
|