Files
impala/tests/query_test/test_parquet_page_index.py
Joe McDonnell c5a0ec8bdf IMPALA-11980 (part 1): Put all thrift-generated python code into the impala_thrift_gen package
This puts all of the thrift-generated python code into the
impala_thrift_gen package. This is similar to what Impyla
does for its thrift-generated python code, except that it
uses the impala_thrift_gen package rather than impala._thrift_gen.
This is a preparatory patch for fixing the absolute import
issues.

This patches all of the thrift files to add the python namespace.
This has code to apply the patching to the thirdparty thrift
files (hive_metastore.thrift, fb303.thrift) to do the same.

Putting all the generated python into a package makes it easier
to understand where the imports are getting code. When the
subsequent change rearranges the shell code, the thrift generated
code can stay in a separate directory.

This uses isort to sort the imports for the affected Python files
with the provided .isort.cfg file. This also adds an impala-isort
shell script to make it easy to run.

Testing:
 - Ran a core job

Change-Id: Ie2927f22c7257aa38a78084efe5bd76d566493c0
Reviewed-on: http://gerrit.cloudera.org:8080/20169
Tested-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
Reviewed-by: Riza Suminto <riza.suminto@cloudera.com>
2025-04-15 17:03:02 +00:00

537 lines
26 KiB
Python

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# Targeted Impala insert tests
from __future__ import absolute_import, division, print_function
from collections import namedtuple
import os
import random
import string
from subprocess import check_call
from impala_thrift_gen.parquet.ttypes import (
BoundaryOrder,
ColumnIndex,
OffsetIndex,
PageHeader,
PageType,
)
from tests.common.impala_test_suite import ImpalaTestSuite
from tests.common.skip import SkipIfLocal
from tests.util.filesystem_utils import get_fs_path
from tests.util.get_parquet_metadata import (
decode_stats_value,
get_parquet_metadata,
read_serialized_object,
)
PAGE_INDEX_MAX_STRING_LENGTH = 64
@SkipIfLocal.parquet_file_size
class TestHdfsParquetTableIndexWriter(ImpalaTestSuite):
"""Since PARQUET-922 page statistics can be written before the footer.
The tests in this class checks if Impala writes the page indices correctly.
It is temporarily a custom cluster test suite because we need to set the
enable_parquet_page_index_writing command-line flag for the Impala daemon
in order to make it write the page index.
TODO: IMPALA-5843 Once Impala is able to read the page index and also write it by
default, this test suite should be moved back to query tests.
"""
@classmethod
def add_test_dimensions(cls):
super(TestHdfsParquetTableIndexWriter, cls).add_test_dimensions()
cls.ImpalaTestMatrix.add_constraint(
lambda v: v.get_value('table_format').file_format == 'parquet')
def _get_row_group_from_file(self, parquet_file):
"""Returns namedtuples that contain the schema, stats, offset_index, column_index,
and page_headers for each column in the first row group in file 'parquet_file'. Fails
if the file contains multiple row groups.
"""
ColumnInfo = namedtuple('ColumnInfo', ['schema', 'stats', 'offset_index',
'column_index', 'page_headers'])
file_meta_data = get_parquet_metadata(parquet_file)
assert len(file_meta_data.row_groups) == 1
# We only support flat schemas, the additional element is the root element.
schemas = file_meta_data.schema[1:]
row_group = file_meta_data.row_groups[0]
assert len(schemas) == len(row_group.columns)
row_group_index = []
with open(parquet_file, 'rb') as file_handle:
for column, schema in zip(row_group.columns, schemas):
column_index_offset = column.column_index_offset
column_index_length = column.column_index_length
column_index = None
if column_index_offset and column_index_length:
assert(column_index_offset >= 0 and column_index_length >= 0)
column_index = read_serialized_object(ColumnIndex, file_handle,
column_index_offset, column_index_length)
column_meta_data = column.meta_data
stats = None
if column_meta_data:
stats = column_meta_data.statistics
offset_index_offset = column.offset_index_offset
offset_index_length = column.offset_index_length
offset_index = None
page_headers = []
if offset_index_offset and offset_index_length:
assert(offset_index_offset >= 0 and offset_index_length >= 0)
offset_index = read_serialized_object(OffsetIndex, file_handle,
offset_index_offset, offset_index_length)
for page_loc in offset_index.page_locations:
assert(page_loc.offset >= 0 and page_loc.compressed_page_size >= 0)
page_header = read_serialized_object(PageHeader, file_handle, page_loc.offset,
page_loc.compressed_page_size)
page_headers.append(page_header)
column_info = ColumnInfo(schema, stats, offset_index, column_index, page_headers)
row_group_index.append(column_info)
return row_group_index
def _get_row_groups_from_hdfs_folder(self, hdfs_path, tmpdir):
"""Returns a list of column infos (containing the schema, stats, offset_index,
column_index, and page_headers) for the first row group in all parquet files in
'hdfs_path'.
"""
row_group_indexes = []
check_call(['hdfs', 'dfs', '-get', hdfs_path, tmpdir.strpath])
for root, subdirs, files in os.walk(tmpdir.strpath):
for f in files:
parquet_file = os.path.join(root, str(f))
row_group_indexes.append(self._get_row_group_from_file(parquet_file))
return row_group_indexes
def _validate_page_locations(self, page_locations):
"""Validate that the page locations are in order."""
for previous_loc, current_loc in zip(page_locations[:-1], page_locations[1:]):
assert previous_loc.offset < current_loc.offset
assert previous_loc.first_row_index < current_loc.first_row_index
def _validate_null_stats(self, index_size, column_info):
"""Validates the statistics stored in null_pages and null_counts."""
column_index = column_info.column_index
column_stats = column_info.stats
assert column_index.null_pages is not None
assert len(column_index.null_pages) == index_size
assert column_index.null_counts is not None
assert len(column_index.null_counts) == index_size
for page_is_null, null_count, page_header in zip(column_index.null_pages,
column_index.null_counts, column_info.page_headers):
assert page_header.type == PageType.DATA_PAGE
num_values = page_header.data_page_header.num_values
assert not page_is_null or null_count == num_values
if column_stats:
assert column_stats.null_count == sum(column_index.null_counts)
def _validate_min_max_values(self, index_size, column_info):
"""Validate min/max values of the pages in a column chunk."""
column_index = column_info.column_index
min_values = column_info.column_index.min_values
assert len(min_values) == index_size
max_values = column_info.column_index.max_values
assert len(max_values) == index_size
if not column_info.stats:
return
column_min_value_str = column_info.stats.min_value
column_max_value_str = column_info.stats.max_value
if column_min_value_str is None or column_max_value_str is None:
# If either is None, then both need to be None.
assert column_min_value_str is None and column_max_value_str is None
# No min and max value, all pages need to be null
for idx, null_page in enumerate(column_index.null_pages):
assert null_page, "Page {} of column {} is not null, \
but doesn't have min and max values!".format(idx, column_index.schema.name)
# Everything is None, no further checks needed.
return
column_min_value = decode_stats_value(column_info.schema, column_min_value_str)
for null_page, page_min_str in zip(column_index.null_pages, min_values):
if not null_page:
page_min_value = decode_stats_value(column_info.schema, page_min_str)
# If type is str, page_min_value might have been truncated.
if isinstance(page_min_value, bytes):
assert page_min_value >= column_min_value[:len(page_min_value)]
else:
assert page_min_value >= column_min_value
column_max_value = decode_stats_value(column_info.schema, column_max_value_str)
for null_page, page_max_str in zip(column_index.null_pages, max_values):
if not null_page:
page_max_value = decode_stats_value(column_info.schema, page_max_str)
# If type is str, page_max_value might have been truncated and incremented.
if (isinstance(page_max_value, bytes)
and len(page_max_value) == PAGE_INDEX_MAX_STRING_LENGTH):
max_val_prefix = page_max_value.rstrip(b'\0')
assert max_val_prefix[:-1] <= column_max_value
else:
assert page_max_value <= column_max_value
def _validate_ordering(self, ordering, schema, null_pages, min_values, max_values):
"""Check if the ordering of the values reflects the value of 'ordering'."""
def is_sorted(l, reverse=False):
if not reverse:
return all(a <= b for a, b in zip(l, l[1:]))
else:
return all(a >= b for a, b in zip(l, l[1:]))
# Filter out null pages and decode the actual min/max values.
actual_min_values = [decode_stats_value(schema, min_val)
for min_val, is_null in zip(min_values, null_pages)
if not is_null]
actual_max_values = [decode_stats_value(schema, max_val)
for max_val, is_null in zip(max_values, null_pages)
if not is_null]
# For ASCENDING and DESCENDING, both min and max values need to be sorted.
if ordering == BoundaryOrder.ASCENDING:
assert is_sorted(actual_min_values)
assert is_sorted(actual_max_values)
elif ordering == BoundaryOrder.DESCENDING:
assert is_sorted(actual_min_values, reverse=True)
assert is_sorted(actual_max_values, reverse=True)
else:
assert ordering == BoundaryOrder.UNORDERED
# For UNORDERED, min and max values cannot be both sorted.
assert not is_sorted(actual_min_values) or not is_sorted(actual_max_values)
assert (not is_sorted(actual_min_values, reverse=True) or
not is_sorted(actual_max_values, reverse=True))
def _validate_boundary_order(self, column_info):
"""Validate that min/max values are really in the order specified by
boundary order.
"""
column_index = column_info.column_index
self._validate_ordering(column_index.boundary_order, column_info.schema,
column_index.null_pages, column_index.min_values, column_index.max_values)
def _validate_parquet_page_index(self, hdfs_path, tmpdir):
"""Validates that 'hdfs_path' contains exactly one parquet file and that the rowgroup
index in that file is in the valid format.
"""
row_group_indexes = self._get_row_groups_from_hdfs_folder(hdfs_path, tmpdir)
for columns in row_group_indexes:
for column_info in columns:
try:
index_size = len(column_info.offset_index.page_locations)
assert index_size > 0
self._validate_page_locations(column_info.offset_index.page_locations)
self._validate_null_stats(index_size, column_info)
self._validate_min_max_values(index_size, column_info)
self._validate_boundary_order(column_info)
except AssertionError as e:
e.args += ("Validation failed on column {}.".format(column_info.schema.name),)
raise
def _ctas_table(self, vector, unique_database, source_db, source_table,
tmpdir, sorting_column=None):
"""Copies the contents of 'source_db.source_table' into a parquet table.
"""
qualified_source_table = "{0}.{1}".format(source_db, source_table)
table_name = source_table
qualified_table_name = "{0}.{1}".format(unique_database, table_name)
# Setting num_nodes = 1 ensures that the query is executed on the coordinator,
# resulting in a single parquet file being written.
vector.get_value('exec_option')['num_nodes'] = 1
self.execute_query("drop table if exists {0}".format(qualified_table_name))
if sorting_column is None:
query = ("create table {0} stored as parquet as select * from {1}").format(
qualified_table_name, qualified_source_table)
else:
query = ("create table {0} sort by({1}) stored as parquet as select * from {2}"
).format(qualified_table_name, sorting_column, qualified_source_table)
self.execute_query(query, vector.get_value('exec_option'))
def _ctas_table_and_verify_index(self, vector, unique_database, source_db, source_table,
tmpdir, sorting_column=None):
"""Copies 'source_table' into a parquet table and makes sure that the index
in the resulting parquet file is valid.
"""
self._ctas_table(vector, unique_database, source_db, source_table, tmpdir,
sorting_column)
hdfs_path = get_fs_path('/test-warehouse/{0}.db/{1}/'.format(unique_database,
source_table))
qualified_source_table = "{0}.{1}".format(unique_database, source_table)
self._validate_parquet_page_index(hdfs_path, tmpdir.join(qualified_source_table))
def _create_table_with_values_of_type(self, col_type, vector, unique_database,
table_name, values_sql):
"""Creates a parquet table that has a single string column, then invokes an insert
statement on it with the 'values_sql' parameter. E.g. 'values_sql' is "('asdf')".
It returns the HDFS path for the table.
"""
qualified_table_name = "{0}.{1}".format(unique_database, table_name)
self.execute_query("drop table if exists {0}".format(qualified_table_name))
vector.get_value('exec_option')['num_nodes'] = 1
query = ("create table {0} (x {1}) stored as parquet").format(
qualified_table_name, col_type)
self.execute_query(query, vector.get_value('exec_option'))
self.execute_query("insert into {0} values {1}".format(qualified_table_name,
values_sql), vector.get_value('exec_option'))
return get_fs_path('/test-warehouse/{0}.db/{1}/'.format(unique_database,
table_name))
def test_ctas_tables(self, vector, unique_database, tmpdir):
"""Test different Parquet files created via CTAS statements."""
# Test that writing a parquet file populates the rowgroup indexes with the correct
# values.
self._ctas_table_and_verify_index(vector, unique_database, "functional", "alltypes",
tmpdir)
# Test that writing a parquet file populates the rowgroup indexes with the correct
# values, using decimal types.
self._ctas_table_and_verify_index(vector, unique_database, "functional",
"decimal_tbl", tmpdir)
# Test that writing a parquet file populates the rowgroup indexes with the correct
# values, using date types.
self._ctas_table_and_verify_index(vector, unique_database, "functional", "date_tbl",
tmpdir)
# Test that writing a parquet file populates the rowgroup indexes with the correct
# values, using char types.
self._ctas_table_and_verify_index(vector, unique_database, "functional",
"chars_formats", tmpdir)
# Test that we don't write min/max values in the index for null columns.
# Ensure null_count is set for columns with null values.
self._ctas_table_and_verify_index(vector, unique_database, "functional", "nulltable",
tmpdir)
# Test that when a ColumnChunk is written across multiple pages, the index is
# valid.
self._ctas_table_and_verify_index(vector, unique_database, "tpch", "customer",
tmpdir)
self._ctas_table_and_verify_index(vector, unique_database, "tpch", "orders",
tmpdir)
# Test that when the schema has a sorting column, the index is valid.
self._ctas_table_and_verify_index(vector, unique_database,
"functional_parquet", "zipcode_incomes", tmpdir, "id")
# Test table with wide row.
self._ctas_table_and_verify_index(vector, unique_database,
"functional_parquet", "widerow", tmpdir)
# Test tables with wide rows and many columns.
self._ctas_table_and_verify_index(vector, unique_database,
"functional_parquet", "widetable_250_cols", tmpdir)
self._ctas_table_and_verify_index(vector, unique_database,
"functional_parquet", "widetable_500_cols", tmpdir)
self._ctas_table_and_verify_index(vector, unique_database,
"functional_parquet", "widetable_1000_cols", tmpdir)
# Test table with 40001 distinct values that aligns full page with full dictionary.
self._ctas_table_and_verify_index(vector, unique_database,
"functional", "empty_parquet_page_source_impala10186", tmpdir)
def test_max_string_values(self, vector, unique_database, tmpdir):
"""Test string values that are all 0xFFs or end with 0xFFs."""
col_type = "STRING"
# String value is all of 0xFFs but its length is less than PAGE_INDEX_TRUNCATE_LENGTH.
short_tbl = "short_tbl"
short_hdfs_path = self._create_table_with_values_of_type(col_type, vector,
unique_database, short_tbl,
"(rpad('', {0}, chr(255)))".format(PAGE_INDEX_MAX_STRING_LENGTH - 1))
self._validate_parquet_page_index(short_hdfs_path, tmpdir.join(short_tbl))
# String value is all of 0xFFs and its length is PAGE_INDEX_TRUNCATE_LENGTH.
fit_tbl = "fit_tbl"
fit_hdfs_path = self._create_table_with_values_of_type(col_type, vector,
unique_database, fit_tbl,
"(rpad('', {0}, chr(255)))".format(PAGE_INDEX_MAX_STRING_LENGTH))
self._validate_parquet_page_index(fit_hdfs_path, tmpdir.join(fit_tbl))
# All bytes are 0xFFs and the string is longer then PAGE_INDEX_TRUNCATE_LENGTH, so we
# should not write page statistics.
too_long_tbl = "too_long_tbl"
too_long_hdfs_path = self._create_table_with_values_of_type(col_type, vector,
unique_database, too_long_tbl, "(rpad('', {0}, chr(255)))".format(
PAGE_INDEX_MAX_STRING_LENGTH + 1))
row_group_indexes = self._get_row_groups_from_hdfs_folder(too_long_hdfs_path,
tmpdir.join(too_long_tbl))
column = row_group_indexes[0][0]
assert column.column_index is None
# We always write the offset index
assert column.offset_index is not None
# Test string with value that starts with 'aaa' following with 0xFFs and its length is
# greater than PAGE_INDEX_TRUNCATE_LENGTH. Max value should be 'aab'.
aaa_tbl = "aaa_tbl"
aaa_hdfs_path = self._create_table_with_values_of_type(col_type, vector,
unique_database, aaa_tbl,
"(rpad('aaa', {0}, chr(255)))".format(PAGE_INDEX_MAX_STRING_LENGTH + 1))
row_group_indexes = self._get_row_groups_from_hdfs_folder(aaa_hdfs_path,
tmpdir.join(aaa_tbl))
column = row_group_indexes[0][0]
assert len(column.column_index.max_values) == 1
max_value = column.column_index.max_values[0]
assert max_value == b'aab'
def test_row_count_limit(self, vector, unique_database, tmpdir):
"""Tests that we can set the page row count limit via a query option.
"""
vector.get_value('exec_option')['parquet_page_row_count_limit'] = 20
table_name = "alltypessmall"
self._ctas_table_and_verify_index(vector, unique_database, "functional", table_name,
tmpdir)
hdfs_path = get_fs_path('/test-warehouse/{0}.db/{1}/'.format(unique_database,
table_name))
row_group_indexes = self._get_row_groups_from_hdfs_folder(hdfs_path,
tmpdir.join(table_name))
for row_group in row_group_indexes:
for column in row_group:
for page_header in column.page_headers:
if page_header.data_page_header is not None:
assert page_header.data_page_header.num_values == 20
result_row20 = self.execute_query(
"select * from {0}.{1} order by id".format(unique_database, table_name))
result_orig = self.execute_query(
"select * from functional.alltypessmall order by id")
assert result_row20.data == result_orig.data
def test_row_count_limit_nulls(self, vector, unique_database, tmpdir):
"""Tests that we can set the page row count limit on a table with null values.
"""
vector.get_value('exec_option')['parquet_page_row_count_limit'] = 2
null_tbl = 'null_table'
null_tbl_path = self._create_table_with_values_of_type("STRING", vector,
unique_database, null_tbl, "(NULL), (NULL), ('foo'), (NULL), (NULL), (NULL)")
row_group_indexes = self._get_row_groups_from_hdfs_folder(null_tbl_path,
tmpdir.join(null_tbl))
column = row_group_indexes[0][0]
assert column.column_index.null_pages[0] == True
assert column.column_index.null_pages[1] == False
assert column.column_index.null_pages[2] == True
assert len(column.page_headers) == 3
for page_header in column.page_headers:
assert page_header.data_page_header.num_values == 2
def test_disable_page_index_writing(self, vector, unique_database, tmpdir):
"""Tests that we can disable page index writing via a query option.
"""
vector.get_value('exec_option')['parquet_write_page_index'] = False
table_name = "alltypessmall"
self._ctas_table(vector, unique_database, "functional", table_name, tmpdir)
hdfs_path = get_fs_path('/test-warehouse/{0}.db/{1}/'.format(unique_database,
table_name))
row_group_indexes = self._get_row_groups_from_hdfs_folder(hdfs_path,
tmpdir.join(table_name))
for row_group in row_group_indexes:
for column in row_group:
assert column.offset_index is None
assert column.column_index is None
def test_matched_page_and_dict_limits(self, vector, unique_database, tmpdir):
"""Tests that we don't produce empty pages when the page and dictionary fill
simultaneously. Dictionary limit is 40000.
"""
vector.get_value('exec_option')['parquet_page_row_count_limit'] = 20000
table_name = "empty_parquet_page_dict_limit"
qualified_table_name = "{0}.{1}".format(unique_database, table_name)
# Setting num_nodes = 1 ensures that the query is executed on the coordinator,
# resulting in a single parquet file being written.
vector.get_value('exec_option')['num_nodes'] = 1
query = ("create table {0} stored as parquet as select distinct l_orderkey as n "
"from tpch_parquet.lineitem order by l_orderkey limit 40001").format(
qualified_table_name)
self.execute_query(query, vector.get_value('exec_option'))
hdfs_path = get_fs_path('/test-warehouse/{0}.db/{1}/'.format(unique_database,
table_name))
self._validate_parquet_page_index(hdfs_path, tmpdir.join(qualified_table_name))
def test_row_count_limit_large_string(self, vector, unique_database, tmpdir):
"""Tests that if we write a very large string after hitting page row count limit, we
don't write an empty page.
"""
vector.get_value('exec_option')['parquet_page_row_count_limit'] = 2
string_tbl = 'string_table'
string_tbl_path = self._create_table_with_values_of_type("STRING", vector,
unique_database, string_tbl, "('a'), ('b'), ('{0}')".format(
''.join([random.choice(string.ascii_letters + string.digits)
for _ in range(64 * 1024 + 1)])))
self._validate_parquet_page_index(string_tbl_path, tmpdir.join(
"{0}.{1}".format(unique_database, string_tbl)))
def test_nan_values_for_floating_types(self, vector, unique_database, tmpdir):
""" IMPALA-7304: Impala doesn't write column index for floating-point columns
until PARQUET-1222 is resolved. This is modified by:
IMPALA-8498: Write column index for floating types when NaN is not present.
"""
for col_type in ["float", "double"]:
nan_val = "(CAST('NaN' as " + col_type + "))"
# Table contains no NaN values.
no_nan_tbl = "no_nan_tbl_" + col_type
no_nan_hdfs_path = self._create_table_with_values_of_type(col_type, vector,
unique_database, no_nan_tbl, "(1.5), (2.3), (4.5), (42.42), (3.1415), (0.0)")
self._validate_parquet_page_index(no_nan_hdfs_path, tmpdir.join(no_nan_tbl))
row_group_indexes = self._get_row_groups_from_hdfs_folder(no_nan_hdfs_path,
tmpdir.join(no_nan_tbl))
column = row_group_indexes[0][0]
assert column.column_index is not None
# Table contains NaN as first value.
first_nan_tbl = "first_nan_tbl_" + col_type
first_nan_hdfs_path = self._create_table_with_values_of_type(col_type, vector,
unique_database, first_nan_tbl,
nan_val + ", (2.3), (4.5), (42.42), (3.1415), (0.0)")
row_group_indexes = self._get_row_groups_from_hdfs_folder(first_nan_hdfs_path,
tmpdir.join(first_nan_tbl))
column = row_group_indexes[0][0]
assert column.column_index is None
# Table contains NaN as last value.
last_nan_tbl = "last_nan_tbl_" + col_type
last_nan_hdfs_path = self._create_table_with_values_of_type(col_type, vector,
unique_database, last_nan_tbl,
"(1.5), (2.3), (42.42), (3.1415), (0.0), " + nan_val)
row_group_indexes = self._get_row_groups_from_hdfs_folder(last_nan_hdfs_path,
tmpdir.join(last_nan_tbl))
column = row_group_indexes[0][0]
assert column.column_index is None
# Table contains NaN value in the middle.
mid_nan_tbl = "mid_nan_tbl_" + col_type
mid_nan_hdfs_path = self._create_table_with_values_of_type(col_type, vector,
unique_database, mid_nan_tbl,
"(2.3), (4.5), " + nan_val + ", (42.42), (3.1415), (0.0)")
row_group_indexes = self._get_row_groups_from_hdfs_folder(mid_nan_hdfs_path,
tmpdir.join(mid_nan_tbl))
column = row_group_indexes[0][0]
assert column.column_index is None
# Table contains only NaN values.
only_nan_tbl = "only_nan_tbl_" + col_type
only_nan_hdfs_path = self._create_table_with_values_of_type(col_type, vector,
unique_database, only_nan_tbl, (nan_val + ", ") * 3 + nan_val)
row_group_indexes = self._get_row_groups_from_hdfs_folder(only_nan_hdfs_path,
tmpdir.join(only_nan_tbl))
column = row_group_indexes[0][0]
assert column.column_index is None