Files
impala/tests/query_test/test_sort.py
Riza Suminto 49ac55fb69 IMPALA-9856: Enable result spooling by default.
Result spooling has been relatively stable since it was introduced, and
it has several benefits described in IMPALA-8656. This patch enable
result spooling (SPOOL_QUERY_RESULTS) query options by default.

Furthermore, some tests need to be adjusted to account for result
spooling by default. The following are the adjustment categories and
list of tests that fall under such category.

Change in assertions:
PlannerTest#testAcidTableScans
PlannerTest#testBloomFilterAssignment
PlannerTest#testConstantFolding
PlannerTest#testFkPkJoinDetection
PlannerTest#testFkPkJoinDetectionWithHDFSNumRowsEstDisabled
PlannerTest#testKuduSelectivity
PlannerTest#testMaxRowSize
PlannerTest#testMinMaxRuntimeFilters
PlannerTest#testMinMaxRuntimeFiltersWithHDFSNumRowsEstDisabled
PlannerTest#testMtDopValidation
PlannerTest#testParquetFiltering
PlannerTest#testParquetFilteringDisabled
PlannerTest#testPartitionPruning
PlannerTest#testPreaggBytesLimit
PlannerTest#testResourceRequirements
PlannerTest#testRuntimeFilterQueryOptions
PlannerTest#testSortExprMaterialization
PlannerTest#testSpillableBufferSizing
PlannerTest#testTableSample
PlannerTest#testTpch
PlannerTest#testKuduTpch
PlannerTest#testTpchNested
PlannerTest#testUnion
TpcdsPlannerTest
custom_cluster/test_admission_controller.py::TestAdmissionController::test_dedicated_coordinator_planner_estimates
custom_cluster/test_admission_controller.py::TestAdmissionController::test_memory_rejection
custom_cluster/test_admission_controller.py::TestAdmissionController::test_pool_mem_limit_configs
metadata/test_explain.py::TestExplain::test_explain_level2
metadata/test_explain.py::TestExplain::test_explain_level3
metadata/test_stats_extrapolation.py::TestStatsExtrapolation::test_stats_extrapolation

Increase BUFFER_POOL_LIMIT:
query_test/test_queries.py::TestQueries::test_analytic_fns
query_test/test_runtime_filters.py::TestRuntimeRowFilters::test_row_filter_reservation
query_test/test_sort.py::TestQueryFullSort::test_multiple_mem_limits_full_output
query_test/test_spilling.py::TestSpillingBroadcastJoins::test_spilling_broadcast_joins
query_test/test_spilling.py::TestSpillingDebugActionDimensions::test_spilling_aggs
query_test/test_spilling.py::TestSpillingDebugActionDimensions::test_spilling_regression_exhaustive
query_test/test_udfs.py::TestUdfExecution::test_mem_limits

Increase MEM_LIMIT:
query_test/test_mem_usage_scaling.py::TestExchangeMemUsage::test_exchange_mem_usage_scaling
query_test/test_mem_usage_scaling.py::TestScanMemLimit::test_hdfs_scanner_thread_mem_scaling

Increase MAX_ROW_SIZE:
custom_cluster/test_parquet_max_page_header.py::TestParquetMaxPageHeader::test_large_page_header_config
query_test/test_insert.py::TestInsertQueries::test_insert_large_string
query_test/test_query_mem_limit.py::TestQueryMemLimit::test_mem_limit
query_test/test_scanners.py::TestTextSplitDelimiters::test_text_split_across_buffers_delimiter
query_test/test_scanners.py::TestWideRow::test_wide_row

Disable result spooling to maintain assertion:
custom_cluster/test_admission_controller.py::TestAdmissionController::test_set_request_pool
custom_cluster/test_admission_controller.py::TestAdmissionController::test_timeout_reason_host_memory
custom_cluster/test_admission_controller.py::TestAdmissionController::test_timeout_reason_pool_memory
custom_cluster/test_admission_controller.py::TestAdmissionController::test_queue_reasons_memory
custom_cluster/test_admission_controller.py::TestAdmissionController::test_pool_config_change_while_queued
custom_cluster/test_query_retries.py::TestQueryRetries::test_retry_fetched_rows
custom_cluster/test_query_retries.py::TestQueryRetries::test_retry_finished_query
custom_cluster/test_scratch_disk.py::TestScratchDir::test_no_dirs
custom_cluster/test_scratch_disk.py::TestScratchDir::test_non_existing_dirs
custom_cluster/test_scratch_disk.py::TestScratchDir::test_non_writable_dirs
query_test/test_insert.py::TestInsertQueries::test_insert_large_string (the last query only)
query_test/test_kudu.py::TestKuduMemLimits::test_low_mem_limit_low_selectivity_scan
query_test/test_mem_usage_scaling.py::TestScanMemLimit::test_kudu_scan_mem_usage
query_test/test_queries.py::TestQueriesParquetTables::test_very_large_strings
query_test/test_query_mem_limit.py::TestCodegenMemLimit::test_codegen_mem_limit
shell/test_shell_client.py::TestShellClient::test_fetch_size

Testing:
- Pass exhaustive tests.

Change-Id: I9e360c1428676d8f3fab5d95efee18aca085eba4
Reviewed-on: http://gerrit.cloudera.org:8080/16755
Reviewed-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
Tested-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
2021-03-02 04:58:51 +00:00

266 lines
12 KiB
Python

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import re
from copy import copy, deepcopy
from tests.common.impala_test_suite import ImpalaTestSuite
from tests.common.skip import SkipIfNotHdfsMinicluster
def transpose_results(result, map_fn=lambda x: x):
"""Given a query result (list of strings, each string represents a row), return a list
of columns, where each column is a list of strings. Optionally, map_fn can be provided
to be applied to every value, eg. to convert the strings to their underlying types."""
split_result = [row.split('\t') for row in result]
return [map(map_fn, list(l)) for l in zip(*split_result)]
class TestQueryFullSort(ImpalaTestSuite):
"""Test class to do functional validation of sorting when data is spilled to disk."""
@classmethod
def get_workload(self):
return 'tpch'
@classmethod
def add_test_dimensions(cls):
super(TestQueryFullSort, cls).add_test_dimensions()
if cls.exploration_strategy() == 'core':
cls.ImpalaTestMatrix.add_constraint(lambda v:\
v.get_value('table_format').file_format == 'parquet')
def test_multiple_buffer_pool_limits(self, vector):
"""Using lineitem table forces the multi-phase sort with low buffer_pool_limit.
This test takes about a minute."""
query = """select l_comment, l_partkey, l_orderkey, l_suppkey, l_commitdate
from lineitem order by l_comment limit 100000"""
exec_option = copy(vector.get_value('exec_option'))
exec_option['disable_outermost_topn'] = 1
exec_option['num_nodes'] = 1
table_format = vector.get_value('table_format')
"""The first run should fit in memory, the second run is a 2-phase disk sort,
and the third run is a multi-phase sort (i.e. with an intermediate merge)."""
for buffer_pool_limit in ['-1', '300m', '130m']:
exec_option['buffer_pool_limit'] = buffer_pool_limit
query_result = self.execute_query(
query, exec_option, table_format=table_format)
result = transpose_results(query_result.data)
assert(result[0] == sorted(result[0]))
def test_multiple_sort_run_bytes_limits(self, vector):
"""Using lineitem table forces the multi-phase sort with low sort_run_bytes_limit.
This test takes about a minute."""
query = """select l_comment, l_partkey, l_orderkey, l_suppkey, l_commitdate
from lineitem order by l_comment limit 100000"""
exec_option = copy(vector.get_value('exec_option'))
exec_option['disable_outermost_topn'] = 1
exec_option['num_nodes'] = 1
table_format = vector.get_value('table_format')
"""The first sort run is given a privilege to ignore sort_run_bytes_limit, except
when estimate hints that spill is inevitable. The lower sort_run_bytes_limit of
a query is, the more sort runs are likely to be produced and spilled.
Case 1 : 0 SpilledRuns, because all rows fit within the maximum reservation.
sort_run_bytes_limit is not enforced.
Case 2 : 4 SpilledRuns, because sort node estimate that spill is inevitable.
So all runs are capped to 130m, including the first one."""
options = [('2g', '100m', '0'), ('400m', '130m', '4')]
for (mem_limit, sort_run_bytes_limit, spilled_runs) in options:
exec_option['mem_limit'] = mem_limit
exec_option['sort_run_bytes_limit'] = sort_run_bytes_limit
query_result = self.execute_query(
query, exec_option, table_format=table_format)
m = re.search(r'\s+\- SpilledRuns: .*', query_result.runtime_profile)
assert "SpilledRuns: " + spilled_runs in m.group()
result = transpose_results(query_result.data)
assert(result[0] == sorted(result[0]))
def test_multiple_mem_limits_full_output(self, vector):
""" Exercise a range of memory limits, returning the full sorted input. """
query = """select o_orderdate, o_custkey, o_comment
from orders
order by o_orderdate"""
exec_option = copy(vector.get_value('exec_option'))
table_format = vector.get_value('table_format')
exec_option['default_spillable_buffer_size'] = '8M'
# Minimum memory for different parts of the plan.
buffered_plan_root_sink_reservation_mb = 16
sort_reservation_mb = 48
if table_format.file_format == 'parquet':
scan_reservation_mb = 24
else:
scan_reservation_mb = 8
total_reservation_mb = sort_reservation_mb + scan_reservation_mb \
+ buffered_plan_root_sink_reservation_mb
# The below memory value assume 8M pages.
# Test with unlimited and minimum memory for all file formats.
buffer_pool_limit_values = ['-1', '{0}M'.format(total_reservation_mb)]
if self.exploration_strategy() == 'exhaustive' and \
table_format.file_format == 'parquet':
# Test some intermediate values for parquet on exhaustive.
buffer_pool_limit_values += ['128M', '256M']
for buffer_pool_limit in buffer_pool_limit_values:
exec_option['buffer_pool_limit'] = buffer_pool_limit
result = transpose_results(self.execute_query(
query, exec_option, table_format=table_format).data)
assert(result[0] == sorted(result[0]))
def test_sort_join(self, vector):
"""With minimum memory limit this should be a 1-phase sort"""
query = """select o1.o_orderdate, o2.o_custkey, o1.o_comment from orders o1 join
orders o2 on (o1.o_orderkey = o2.o_orderkey) order by o1.o_orderdate limit 100000"""
exec_option = copy(vector.get_value('exec_option'))
exec_option['disable_outermost_topn'] = 1
exec_option['mem_limit'] = "134m"
exec_option['num_nodes'] = 1
table_format = vector.get_value('table_format')
query_result = self.execute_query(query, exec_option, table_format=table_format)
assert "TotalMergesPerformed: 1" in query_result.runtime_profile
result = transpose_results(query_result.data)
assert(result[0] == sorted(result[0]))
def test_sort_union(self, vector):
query = """select o_orderdate, o_custkey, o_comment from (select * from orders union
select * from orders union all select * from orders) as i
order by o_orderdate limit 100000"""
exec_option = copy(vector.get_value('exec_option'))
exec_option['disable_outermost_topn'] = 1
exec_option['mem_limit'] = "3000m"
table_format = vector.get_value('table_format')
result = transpose_results(self.execute_query(
query, exec_option, table_format=table_format).data)
assert(result[0] == sorted(result[0]))
def test_pathological_input(self, vector):
""" Regression test for stack overflow and poor performance on certain inputs where
always selecting the middle element as a quicksort pivot caused poor performance. The
trick is to concatenate two equal-size sorted inputs. If the middle element is always
selected as the pivot (the old method), the sorter tends to get stuck selecting the
minimum element as the pivot, which results in almost all of the tuples ending up
in the right partition.
"""
query = """select l_orderkey from (
select * from lineitem limit 300000
union all
select * from lineitem limit 300000) t
order by l_orderkey"""
exec_option = copy(vector.get_value('exec_option'))
exec_option['disable_outermost_topn'] = 1
# Run with a single scanner thread so that the input doesn't get reordered.
exec_option['num_nodes'] = "1"
exec_option['num_scanner_threads'] = "1"
table_format = vector.get_value('table_format')
result = transpose_results(self.execute_query(
query, exec_option, table_format=table_format).data)
numeric_results = [int(val) for val in result[0]]
assert(numeric_results == sorted(numeric_results))
def test_spill_empty_strings(self, vector):
"""Test corner case of spilling sort with only empty strings. Spilling with var len
slots typically means the sort must reorder blocks and convert pointers, but this case
has to be handled differently because there are no var len blocks to point into."""
query = """
select empty_str, l_orderkey, l_partkey, l_suppkey,
l_linenumber, l_quantity, l_extendedprice, l_discount, l_tax
from (select substr(l_comment, 1000, 0) empty_str, * from lineitem) t
order by empty_str, l_orderkey, l_partkey, l_suppkey, l_linenumber
limit 100000
"""
exec_option = copy(vector.get_value('exec_option'))
exec_option['disable_outermost_topn'] = 1
exec_option['buffer_pool_limit'] = "256m"
exec_option['num_nodes'] = "1"
table_format = vector.get_value('table_format')
result = transpose_results(self.execute_query(
query, exec_option, table_format=table_format).data)
assert(result[0] == sorted(result[0]))
@SkipIfNotHdfsMinicluster.tuned_for_minicluster
def test_sort_reservation_usage(self, vector):
"""Tests for sorter reservation usage."""
new_vector = deepcopy(vector)
# Run with num_nodes=1 to make execution more deterministic.
new_vector.get_value('exec_option')['num_nodes'] = 1
self.run_test_case('sort-reservation-usage-single-node', new_vector)
class TestRandomSort(ImpalaTestSuite):
@classmethod
def get_workload(self):
return 'functional'
def test_order_by_random(self):
"""Tests that 'order by random()' works as expected."""
# "order by random()" with different seeds should produce different orderings.
seed_query = "select * from functional.alltypestiny order by random(%s)"
results_seed0 = self.execute_query(seed_query % "0")
results_seed1 = self.execute_query(seed_query % "1")
assert results_seed0.data != results_seed1.data
assert sorted(results_seed0.data) == sorted(results_seed1.data)
# Include "random()" in the select list to check that it's sorted correctly.
results = transpose_results(self.execute_query(
"select random() as r from functional.alltypessmall order by r").data,
lambda x: float(x))
assert(results[0] == sorted(results[0]))
# Like above, but with a limit.
results = transpose_results(self.execute_query(
"select random() as r from functional.alltypes order by r limit 100").data,
lambda x: float(x))
assert(results == sorted(results))
# "order by random()" inside an inline view.
query = "select r from (select random() r from functional.alltypessmall) v order by r"
results = transpose_results(self.execute_query(query).data, lambda x: float(x))
assert (results == sorted(results))
def test_analytic_order_by_random(self):
"""Tests that a window function over 'order by random()' works as expected."""
# Since we use the same random seed, the results should be returned in order.
query = """select last_value(rand(2)) over (order by rand(2)) from
functional.alltypestiny"""
results = transpose_results(self.execute_query(query).data, lambda x: float(x))
assert (results == sorted(results))
class TestPartialSort(ImpalaTestSuite):
"""Test class to do functional validation of partial sorts."""
def test_partial_sort_min_reservation(self, unique_database):
"""Test that the partial sort node can operate if it only gets its minimum
memory reservation."""
table_name = "%s.kudu_test" % unique_database
self.client.set_configuration_option(
"debug_action", "-1:OPEN:SET_DENY_RESERVATION_PROBABILITY@1.0")
self.execute_query("""create table %s (col0 string primary key)
partition by hash(col0) partitions 8 stored as kudu""" % table_name)
result = self.execute_query(
"insert into %s select string_col from functional.alltypessmall" % table_name)
assert "PARTIAL SORT" in result.runtime_profile, result.runtime_profile