Files
impala/testdata/workloads/functional-query/queries/QueryTest/spilling-large-rows.test
TheOmid e327a28757 IMPALA-6684: Fix untracked memory in KRPC
During serialization of a row batch header, a tuple_data_ is created
which will hold the compressed tuple data for an outbound row batch.
We would like this tuple data to be trackable as it is responsible for
a significant portion of untrackable memory from the krpc data stream
sender. By using MemTrackerAllocator, we can allocate tuple data and
compression scratch and account for it in the memory tracker of the
KrpcDataStreamSender. This solution replaces the type for tuple data
and compression scratch from std::string to TrackedString, an
std:basic_string with MemTrackerAllocator as the custom allocator.

This patch adds memory estimation in DataStreamSink.java to account
for OutboundRowBatch memory allocation. This patch also removes the
thrift-based serialization because the thrift RPC has been removed
in the prior commit.

Testing:
 - Passed core tests.
 - Ran a single node benchmark which shows no regression.
 - Updated row-batch-serialize-test and row-batch-serialize-benchmark
   to test the row-batch serialization used by KRPC.
 - Manually collected query-profile, heap growth, and memory usage log
   showing untracked memory decreased by 1/2.
 - Add test_datastream_sender.py to verify the peak memory of EXCHANGE
   SENDER node.
 - Raise mem_limit in two of test_spilling_large_rows test case.
 - Print test line number in PlannerTestBase.java

New row-batch serialization benchmark:

Machine Info: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
serialize:            10%   50%   90%     10%     50%     90%
                                        (rel)   (rel)   (rel)
-------------------------------------------------------------
   ser_no_dups_base  18.6  18.8  18.9      1X      1X      1X
        ser_no_dups  18.5  18.5  18.8  0.998X  0.988X  0.991X
   ser_no_dups_full  14.7  14.8  14.8  0.793X   0.79X  0.783X

  ser_adj_dups_base  28.2  28.4  28.8      1X      1X      1X
       ser_adj_dups  68.9  69.1  69.8   2.44X   2.43X   2.43X
  ser_adj_dups_full  56.2  56.7  57.1   1.99X      2X   1.99X

      ser_dups_base  20.7  20.9  20.9      1X      1X      1X
           ser_dups  20.6  20.8  20.9  0.994X  0.995X      1X
      ser_dups_full  39.8    40  40.5   1.93X   1.92X   1.94X

deserialize:          10%   50%   90%     10%     50%     90%
                                        (rel)   (rel)   (rel)
-------------------------------------------------------------
 deser_no_dups_base  75.9  76.6    77      1X      1X      1X
      deser_no_dups  74.9  75.6    76  0.987X  0.987X  0.987X

deser_adj_dups_base   127   128   129      1X      1X      1X
     deser_adj_dups   179   193   195   1.41X   1.51X   1.51X

    deser_dups_base   128   128   129      1X      1X      1X
         deser_dups   165   190   193   1.29X   1.48X   1.49X

Change-Id: I2ba2b907ce4f275a7a1fb8cf75453c7003eb4b82
Reviewed-on: http://gerrit.cloudera.org:8080/18798
Reviewed-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
Tested-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
2022-10-17 21:59:57 +00:00

257 lines
5.6 KiB
Plaintext

====
---- QUERY
# Create a temporary table with 10MB strings for the following tests.
# Need to bump memory estimate to prevent running out of memory.
set mem_limit="1.2gb";
create table bigstrs stored as parquet as
select *, repeat(string_col, 10000000) as bigstr
from functional.alltypes
order by id
limit 25
---- RESULTS
'Inserted 25 row(s)'
====
---- QUERY
# Row is too big to process in agg.
select id, count(distinct bigstr)
from bigstrs
group by id
---- CATCH
Row of size 9.54 MB could not be materialized by AGGREGATION_NODE
====
---- QUERY
# Agg should be able to process the large strings if we increase the row size.
set mem_limit="1gb";
set max_row_size=10m;
select id, count(distinct bigstr)
from bigstrs
group by id
order by id
---- TYPES
int,bigint
---- RESULTS
0,1
1,1
2,1
3,1
4,1
5,1
6,1
7,1
8,1
9,1
10,1
11,1
12,1
13,1
14,1
15,1
16,1
17,1
18,1
19,1
20,1
21,1
22,1
23,1
24,1
====
---- QUERY
# Row is too big to process in right side of hash join.
set mem_limit="1gb";
select straight_join atp.id, bs.id, atp.string_col
from functional.alltypes atp
join bigstrs bs on repeat(atp.string_col, 10000) = substring(bs.bigstr, 5000000, 10000) and atp.id = bs.id
where atp.id < 100
---- CATCH
Row of size 9.54 MB could not be materialized by Hash Join Builder (join_node_id=2). Increase the max_row_size query option (currently 512.00 KB) to process larger rows.
====
---- QUERY
# Row is too big to process in right side of hash join.
set mem_limit="1gb";
set max_row_size=18m;
select straight_join atp.id, bs.id, atp.string_col
from functional.alltypes atp
join bigstrs bs on repeat(atp.string_col, 10000) = substring(bs.bigstr, 5000000, 10000) and atp.id = bs.id
where atp.id < 100
---- TYPES
int,int,string
---- RESULTS
0,0,'0'
1,1,'1'
2,2,'2'
3,3,'3'
4,4,'4'
5,5,'5'
6,6,'6'
7,7,'7'
8,8,'8'
9,9,'9'
10,10,'0'
11,11,'1'
12,12,'2'
13,13,'3'
14,14,'4'
15,15,'5'
16,16,'6'
17,17,'7'
18,18,'8'
19,19,'9'
20,20,'0'
21,21,'1'
22,22,'2'
23,23,'3'
24,24,'4'
====
---- QUERY
# Row is too big to process in sort.
select id, substr(bigstr, 1, 5)
from bigstrs
order by bigstr, id
---- CATCH
Row of size 9.54 MB could not be materialized by SORT_NODE (id=1). Increase the max_row_size query option (currently 512.00 KB) to process larger rows.
====
---- QUERY
# Sort should be able to process the large strings if we increase the row size.
set max_row_size=10m;
select id, substr(bigstr, 1, 5)
from bigstrs
where id < 15
order by bigstr, id
---- TYPES
int,string
---- RESULTS
0,'00000'
10,'00000'
1,'11111'
11,'11111'
2,'22222'
12,'22222'
3,'33333'
13,'33333'
4,'44444'
14,'44444'
5,'55555'
6,'66666'
7,'77777'
8,'88888'
9,'99999'
====
---- QUERY
# Row is too big to process in sort or analytic.
SELECT id, int_col, substring(bigstr, 1, 10), substring(bigstr, 9999999, 1), rank
FROM (
SELECT id, int_col, bigstr, Rank() OVER (
ORDER BY int_col
) AS rank
FROM bigstrs
) a
ORDER BY id
---- CATCH
Row of size 9.54 MB could not be materialized by SORT_NODE (id=1). Increase the max_row_size query option (currently 512.00 KB) to process larger rows.
====
---- QUERY
# Sort and analytic should be able to process the large strings if we increase the row
# size.
set mem_limit="1.4gb";
set max_row_size=10m;
SELECT id, int_col, substring(bigstr, 1, 10), substring(bigstr, 9999999, 1), rank
FROM (
SELECT id, int_col, bigstr, Rank() OVER (
ORDER BY int_col
) AS rank
FROM bigstrs
) a
ORDER BY id
---- TYPES
int,int,string,string,bigint
---- RESULTS
0,0,'0000000000','0',1
1,1,'1111111111','1',4
2,2,'2222222222','2',7
3,3,'3333333333','3',10
4,4,'4444444444','4',13
5,5,'5555555555','5',16
6,6,'6666666666','6',18
7,7,'7777777777','7',20
8,8,'8888888888','8',22
9,9,'9999999999','9',24
10,0,'0000000000','0',1
11,1,'1111111111','1',4
12,2,'2222222222','2',7
13,3,'3333333333','3',10
14,4,'4444444444','4',13
15,5,'5555555555','5',16
16,6,'6666666666','6',18
17,7,'7777777777','7',20
18,8,'8888888888','8',22
19,9,'9999999999','9',24
20,0,'0000000000','0',1
21,1,'1111111111','1',4
22,2,'2222222222','2',7
23,3,'3333333333','3',10
24,4,'4444444444','4',13
====
---- QUERY
# IMPALA-9955,IMPALA-9957: Test aggregation on a table with both large rows and normal
# rows. TODO: use UNION ALL to generate the table after IMPALA-10040 is fixed.
set mem_limit="1gb";
create table bigstrs2 stored as parquet as
select *, repeat(string_col, 100000) as bigstr
from functional.alltypes
order by id
limit 10;
insert into bigstrs2
select *, repeat(string_col, 10000000) as bigstr
from functional.alltypes
order by id
limit 10;
====
---- QUERY
set mem_limit="1gb";
set max_row_size=10m;
select group_concat(string_col), length(bigstr) from bigstrs2
group by bigstr;
---- TYPES
string,int
---- RESULTS
'0',100000
'1',100000
'2',100000
'3',100000
'4',100000
'5',100000
'6',100000
'7',100000
'8',100000
'9',100000
'0',10000000
'1',10000000
'2',10000000
'3',10000000
'4',10000000
'5',10000000
'6',10000000
'7',10000000
'8',10000000
'9',10000000
====
---- QUERY
# IMPALA-9955,IMPALA-9957: Test aggregation on a table with random length of large rows.
# Can't check the results since it's a random table. The following queries will fail or
# crash the impalads when there are bugs in reservation.
set mem_limit="2gb";
create table bigstrs3 stored as parquet as
select *, repeat(uuid(), cast(random() * 200000 as int)) as bigstr
from functional.alltypes
limit 100;
# Length of uuid() is 36. So the max row size is 7,200,000.
set MAX_ROW_SIZE=8m;
create table my_str_group stored as parquet as
select group_concat(string_col) as ss, bigstr
from bigstrs3 group by bigstr;
create table my_cnt stored as parquet as
select count(*) as cnt, bigstr
from bigstrs3 group by bigstr;
====