mirror of
https://github.com/apache/impala.git
synced 2025-12-30 03:01:44 -05:00
- Rework the discrepancy searcher to run DML statements. We do this by
using the query profile to choose a table, copy that table, and
generate a statement that will INSERT into that copy. We chose a slow
copy over other methods because INSERTing into a copy is a more
reliable test that prevents table sizes from getting out of hand or
time-consuming replay to reproduce a particular statement.
- Introduce a statement generator stub. The real generator work is
tracked in IMPALA-4351 and IMPALA-4353. Here we simply generate a
basic INSERT INTO ... VALUES statement to make sure our general query
execution flow is working.
- Add query profile stub for DML statements (INSERT-only at this time).
Since we'll want INSERT INTO ... SELECT very soon, this inherits from
DefaultProfile. Also add building blocks for choosing random
statements in the DefaultProfile.
- Improve the concept of an "execution mode" and add new modes. Before,
we had "RAW", "CREATE_TABLE_AS", and "CREATE_VIEW_AS". The idea here
is that some random SELECT queries could be generated as "CREATE
TABLE|VIEW AS" at execution time, based on weights in the query
profile. First, we remove the use of raw string literals for this,
since raw string literals can be error-prone, and introduce a
StatementExecutionMode class to contain a namespace for the enumerated
statement execution modes. Second, we introduce a couple new execution
modes. The first is DML_SETUP: this is a DML statement that needs to
be run in both the test and reference databases concurrently. For our
purposes, it's the INSERT ... SELECT that copies data from the chosen
random table into the table copy. The second is DML_TEST: this is a
randomly-generated DML statement.
- Switch to using absolute imports in many places. There was a mix of
absolute and relative imports happening here, and they were causing
problems, especially when comparing data types. In Python,
<class 'db_types.Int'> != <class 'tests.comparison.db_types.Int'>.
Using
from __future__ import absolute_import
didn't seem to catch the relative import usage anyway, so I haven't
employed that.
- Rename some, but not nearly all, names from "query" to "statement".
Doing this is a rather large undertaking leading to much larger diffs
and testing (IMPALA-4602).
- Fix a handful of flake8 warnings. There are a bunch that went unfixed
for over- and under-indentation.
- Testing
o ./discrepancy_searcher.py runs with and without --explain-only, and
with --profile default and --profile dmlonly. For tpch_kudu data, it
seems sufficient to use a --timeout of about 300.
o Leopard run to make sure standard SELECT-only generation still works
o Generated random stress queries locally
o Generated random data locally
Change-Id: Ia4c63a2223185d0e056cc5713796772e5d1b8414
Reviewed-on: http://gerrit.cloudera.org:8080/5387
Reviewed-by: Jim Apple <jbapple-impala@apache.org>
Tested-by: Impala Public Jenkins
352 lines
14 KiB
Python
Executable File
352 lines
14 KiB
Python
Executable File
#!/usr/bin/env impala-python
|
|
|
|
#
|
|
# Licensed to the Apache Software Foundation (ASF) under one
|
|
# or more contributor license agreements. See the NOTICE file
|
|
# distributed with this work for additional information
|
|
# regarding copyright ownership. The ASF licenses this file
|
|
# to you under the Apache License, Version 2.0 (the
|
|
# "License"); you may not use this file except in compliance
|
|
# with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
'''This module provides random data generation and database population.
|
|
|
|
When this module is run directly for purposes of database population, the default is
|
|
to use a fixed seed for randomization. The result should be that the generated random
|
|
data is the same regardless of when or where the execution is done.
|
|
|
|
'''
|
|
|
|
import os
|
|
from copy import deepcopy
|
|
from logging import getLogger
|
|
from random import choice, randint, seed
|
|
from time import time
|
|
|
|
from tests.comparison.data_generator_mapred_common import (
|
|
estimate_rows_per_reducer,
|
|
MB_PER_REDUCER,
|
|
serialize,
|
|
TextTableDataGenerator)
|
|
from tests.comparison.common import Column, Table
|
|
from tests.comparison.db_types import (
|
|
Char,
|
|
Decimal,
|
|
EXACT_TYPES,
|
|
get_char_class,
|
|
get_decimal_class,
|
|
get_varchar_class,
|
|
String,
|
|
Timestamp,
|
|
TYPES,
|
|
VarChar)
|
|
from tests.comparison import db_connection
|
|
|
|
LOG = getLogger(__name__)
|
|
|
|
def index_tables_in_db_if_possible(cursor):
|
|
if not cursor.conn.supports_index_creation:
|
|
return
|
|
for table_name in cursor.list_table_names():
|
|
LOG.info('Indexing %s on %s' % (table_name, cursor.db_type))
|
|
cursor.index_table(table_name)
|
|
|
|
|
|
def migrate_db(src_cursor, dst_cursor, include_table_names=None):
|
|
'''Read table metadata and data from the source database and create a replica in
|
|
the destination database. For example, the Impala functional test database could
|
|
be copied into Postgresql.
|
|
'''
|
|
for table_name in src_cursor.list_table_names():
|
|
if include_table_names and table_name not in include_table_names:
|
|
continue
|
|
table = src_cursor.describe_table(table_name)
|
|
dst_cursor.create_table(table)
|
|
src_cursor.execute('SELECT * FROM ' + table_name)
|
|
while True:
|
|
rows = src_cursor.fetchmany(size=100)
|
|
if not rows:
|
|
break
|
|
sql = dst_cursor.make_insert_sql_from_data(table, rows)
|
|
dst_cursor.execute(sql)
|
|
index_tables_in_db_if_possible(dst_cursor)
|
|
|
|
|
|
class DbPopulator(object):
|
|
'''This class will populate a database with randomly generated data. The population
|
|
includes table creation and data generation. Table names are hard coded as
|
|
table_<table number>.
|
|
|
|
'''
|
|
|
|
def __init__(self, db_engine=db_connection.IMPALA):
|
|
self.cluster = None
|
|
self.db_name = None
|
|
self.db_engine = db_engine
|
|
|
|
self.min_col_count = None
|
|
self.max_col_count = None
|
|
self.min_row_count = None
|
|
self.max_row_count = None
|
|
self.allowed_storage_formats = None
|
|
self.randomization_seed = None
|
|
|
|
def populate_db(self, table_count, postgresql_conn=None):
|
|
'''Create tables with a random number of cols.
|
|
|
|
The given db_name must have already been created.
|
|
'''
|
|
self.cluster.hdfs.ensure_home_dir()
|
|
hdfs = self.cluster.hdfs.create_client()
|
|
|
|
table_and_generators = list()
|
|
for table_idx in xrange(table_count):
|
|
table = self._create_random_table(
|
|
'table_%s' % (table_idx + 1),
|
|
self.min_col_count,
|
|
self.max_col_count,
|
|
self.allowed_storage_formats)
|
|
self._prepare_table_storage(table, self.db_name)
|
|
if table.storage_format == 'TEXTFILE':
|
|
text_table = table
|
|
else:
|
|
text_table = deepcopy(table)
|
|
text_table.name += '_text'
|
|
text_table.storage_format = 'TEXTFILE'
|
|
text_table.storage_location = None
|
|
text_table.schema_location = None
|
|
self._prepare_table_storage(text_table, self.db_name)
|
|
table_data_generator = TextTableDataGenerator()
|
|
table_data_generator.randomization_seed = self.randomization_seed
|
|
table_data_generator.table = text_table
|
|
table_data_generator.row_count = randint(self.min_row_count, self.max_row_count)
|
|
table_and_generators.append((table, table_data_generator))
|
|
|
|
self._run_data_generator_mr_job([g for _, g in table_and_generators], self.db_name)
|
|
|
|
with self.cluster.hive.cursor(db_name=self.db_name) as cursor:
|
|
for table, table_data_generator in table_and_generators:
|
|
cursor.create_table(table)
|
|
text_table = table_data_generator.table
|
|
if postgresql_conn:
|
|
with postgresql_conn.cursor() as postgresql_cursor:
|
|
postgresql_cursor.create_table(table)
|
|
for data_file in hdfs.list(text_table.storage_location):
|
|
with hdfs.read(text_table.storage_location + '/' + data_file) as reader:
|
|
postgresql_cursor.copy_expert(
|
|
r"COPY %s FROM STDIN WITH DELIMITER E'\x01'" % table.name, reader)
|
|
if table.storage_format != 'TEXTFILE':
|
|
cursor.create_table(text_table)
|
|
cursor.execute('INSERT INTO %s SELECT * FROM %s'
|
|
% (table.name, text_table.name))
|
|
cursor.drop_table(text_table.name)
|
|
if self.db_engine is db_connection.IMPALA:
|
|
with self.cluster.impala.cursor(db_name=self.db_name) as cursor:
|
|
cursor.invalidate_metadata()
|
|
cursor.compute_stats()
|
|
elif self.db_engine is db_connection.HIVE:
|
|
with self.cluster.hive.cursor(db_name=self.db_name) as cursor:
|
|
cursor.invalidate_metadata()
|
|
cursor.compute_stats()
|
|
else:
|
|
raise ValueError("db_engine must be of type %s or %s", db_connection.IMPALA,
|
|
db_connection.HIVE)
|
|
if postgresql_conn:
|
|
with postgresql_conn.cursor() as postgresql_cursor:
|
|
index_tables_in_db_if_possible(postgresql_cursor)
|
|
|
|
def _create_random_table(self,
|
|
table_name,
|
|
min_col_count,
|
|
max_col_count,
|
|
allowed_storage_formats):
|
|
'''Create and return a Table with a random number of cols.'''
|
|
col_count = randint(min_col_count, max_col_count)
|
|
storage_format = choice(allowed_storage_formats)
|
|
table = Table(table_name)
|
|
table.storage_format = storage_format
|
|
allowed_types = list(TYPES)
|
|
# Avro doesn't support timestamps yet.
|
|
if table.storage_format == 'AVRO':
|
|
allowed_types.remove(Timestamp)
|
|
# TODO: 'table.cols' returns a copy of all scalar cols, so 'table.cols.append()'
|
|
# doesn't actually modify the table's columns. 'table.cols' should be changed
|
|
# to allow access to the real columns.
|
|
cols = table.cols
|
|
for col_idx in xrange(col_count):
|
|
col_type = choice(allowed_types)
|
|
col_type = choice(filter(lambda type_: issubclass(type_, col_type), EXACT_TYPES))
|
|
if issubclass(col_type, VarChar) and not issubclass(col_type, String):
|
|
col_type = get_varchar_class(randint(1, VarChar.MAX))
|
|
elif issubclass(col_type, Char) and not issubclass(col_type, String):
|
|
col_type = get_char_class(randint(1, Char.MAX))
|
|
elif issubclass(col_type, Decimal):
|
|
max_digits = randint(1, Decimal.MAX_DIGITS)
|
|
col_type = get_decimal_class(max_digits, randint(1, max_digits))
|
|
col = Column(
|
|
table,
|
|
'%s_col_%s' % (col_type.__name__.lower(), col_idx + 1),
|
|
col_type)
|
|
cols.append(col)
|
|
table.cols = cols
|
|
return table
|
|
|
|
def _prepare_table_storage(self, table, db_name):
|
|
with self.cluster.hive.cursor(db_name=self.db_name) as cursor:
|
|
cursor.ensure_storage_location(table)
|
|
hdfs = self.cluster.hdfs.create_client()
|
|
if hdfs.exists(table.storage_location):
|
|
hdfs.delete(table.storage_location, recursive=True)
|
|
hdfs.makedirs(table.storage_location, permission='777')
|
|
|
|
def _run_data_generator_mr_job(self, table_data_generators, db_name):
|
|
timestamp = int(time())
|
|
mapper_input_file = '/tmp/data_gen_%s_mr_input_%s' % (db_name, timestamp)
|
|
hdfs = self.cluster.hdfs.create_client()
|
|
if hdfs.exists(mapper_input_file):
|
|
hdfs.delete(mapper_input_file)
|
|
reducer_count = 0
|
|
mapper_input_data = list()
|
|
for table_data_generator in table_data_generators:
|
|
reducer_count += (table_data_generator.row_count /
|
|
estimate_rows_per_reducer(table_data_generator, MB_PER_REDUCER)) + 1
|
|
mapper_input_data.append(serialize(table_data_generator))
|
|
hdfs.write(mapper_input_file, data='\n'.join(mapper_input_data))
|
|
|
|
files = ['common.py', 'db_types.py', 'data_generator_mapred_common.py',
|
|
'data_generator_mapper.py', 'data_generator_reducer.py',
|
|
'random_val_generator.py']
|
|
dir_path = os.path.dirname(__file__)
|
|
files = [os.path.join(dir_path, f) for f in files]
|
|
|
|
hdfs_output_dir = '/tmp/data_gen_%s_mr_output_%s' % (db_name, timestamp)
|
|
if hdfs.exists(hdfs_output_dir):
|
|
hdfs.delete(hdfs_output_dir, recursive=True)
|
|
|
|
LOG.info('Starting MR job to generate data for %s', db_name)
|
|
self.cluster.yarn.run_mr_job(self.cluster.yarn.find_mr_streaming_jar(), job_args=r'''
|
|
-D mapred.reduce.tasks=%s \
|
|
-D stream.num.map.output.key.fields=2 \
|
|
-files %s \
|
|
-input %s \
|
|
-output %s \
|
|
-mapper data_generator_mapper.py \
|
|
-reducer data_generator_reducer.py'''.strip()
|
|
% (reducer_count, ','.join(files), mapper_input_file, hdfs_output_dir))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
|
|
|
|
from tests.comparison import cli_options
|
|
|
|
parser = ArgumentParser(
|
|
usage='usage: \n'
|
|
' %(prog)s [options] [populate]\n\n'
|
|
' Create and populate database(s). The Impala database will always be \n'
|
|
' included. Postgres is optional. The other databases are not supported.\n\n'
|
|
' %(prog)s [options] migrate\n\n'
|
|
' Migrate an Impala database to another database type. The destination \n'
|
|
' database will be dropped and recreated.',
|
|
formatter_class=ArgumentDefaultsHelpFormatter)
|
|
cli_options.add_logging_options(parser)
|
|
cli_options.add_cluster_options(parser)
|
|
cli_options.add_db_name_option(parser)
|
|
cli_options.add_connection_option_groups(parser)
|
|
|
|
group = parser.add_argument_group('Database Population Options')
|
|
group.add_argument('--randomization-seed', default=1, type=int,
|
|
help='The randomization will be initialized with this seed. Using the same seed '
|
|
'will produce the same results across runs.')
|
|
cli_options.add_storage_format_options(group)
|
|
group.add_argument('--create-data-files', default=False, action='store_true',
|
|
help='Create files that can be used to repopulate the databases elsewhere.')
|
|
group.add_argument('--table-count', default=10, type=int,
|
|
help='The number of tables to generate.')
|
|
group.add_argument('--min-column-count', default=1, type=int,
|
|
help='The minimum number of columns to generate per table.')
|
|
group.add_argument('--max-column-count', default=100, type=int,
|
|
help='The maximum number of columns to generate per table.')
|
|
group.add_argument('--min-row-count', default=(10 ** 3), type=int,
|
|
help='The minimum number of rows to generate per table.')
|
|
group.add_argument('--max-row-count', default=(10 ** 6), type=int,
|
|
help='The maximum number of rows to generate per table.')
|
|
parser.add_argument_group(group)
|
|
|
|
group = parser.add_argument_group('Database Migration Options')
|
|
group.add_argument('--migrate-table-names',
|
|
help='Table names should be separated with commas. The default is to migrate all '
|
|
'tables.')
|
|
parser.add_argument_group(group)
|
|
parser.add_argument('command', nargs='*', help='The command to run either "populate"'
|
|
' or "migrate".')
|
|
args = parser.parse_args()
|
|
if len(args.command) > 1:
|
|
raise Exception('Only one command can be chosen. Requested commands were: %s'
|
|
% args.command)
|
|
command = args.command[0] if args.command else 'populate'
|
|
if command not in ('populate', 'migrate'):
|
|
raise Exception('Command must either be "populate" or "migrate" but was "%s"'
|
|
% command)
|
|
if command == 'migrate' and \
|
|
not any((args.use_mysql, args.use_postgresql, args.use_oracle)):
|
|
raise Exception('At least one destination database must be chosen with '
|
|
'--use-<database type>')
|
|
|
|
cli_options.configure_logging(args.log_level, debug_log_file=args.debug_log_file)
|
|
|
|
seed(args.randomization_seed)
|
|
|
|
cluster = cli_options.create_cluster(args)
|
|
|
|
populator = DbPopulator(db_connection.HIVE if args.use_hive else db_connection.IMPALA)
|
|
if command == 'populate':
|
|
populator.randomization_seed = args.randomization_seed
|
|
populator.cluster = cluster
|
|
populator.db_name = args.db_name
|
|
populator.min_col_count = args.min_column_count
|
|
populator.max_col_count = args.max_column_count
|
|
populator.min_row_count = args.min_row_count
|
|
populator.max_row_count = args.max_row_count
|
|
populator.allowed_storage_formats = args.storage_file_formats.split(',')
|
|
|
|
if args.use_hive:
|
|
with cluster.hive.connect() as conn:
|
|
with conn.cursor() as cursor:
|
|
cursor.ensure_empty_db(args.db_name)
|
|
else:
|
|
with cluster.impala.connect() as conn:
|
|
with conn.cursor() as cursor:
|
|
cursor.invalidate_metadata()
|
|
cursor.ensure_empty_db(args.db_name)
|
|
|
|
if args.use_postgresql:
|
|
with cli_options.create_connection(args) as postgresql_conn:
|
|
with postgresql_conn.cursor() as cursor:
|
|
cursor.ensure_empty_db(args.db_name)
|
|
postgresql_conn = cli_options.create_connection(args, db_name=args.db_name)
|
|
else:
|
|
postgresql_conn = None
|
|
populator.populate_db(args.table_count, postgresql_conn=postgresql_conn)
|
|
else:
|
|
if args.migrate_table_names:
|
|
table_names = args.migrate_table_names.split(',')
|
|
else:
|
|
table_names = None
|
|
with cli_options.create_connection(args) as conn:
|
|
with conn.cursor() as cursor:
|
|
cursor.ensure_empty_db(args.db_name)
|
|
with cli_options.create_connection(args, db_name=args.db_name) as conn:
|
|
with conn.cursor() as dst:
|
|
with cluster.impala.cursor(db_name=args.db_name) as src:
|
|
migrate_db(src, dst, include_table_names=table_names)
|