mirror of
https://github.com/apache/impala.git
synced 2025-12-19 18:12:08 -05:00
This patch provides count(star) optimization for ORC scans, similar to the work done in IMPALA-5036 for Parquet scans. We use the stripes num rows statistics when computing the count star instead of materializing empty rows. The aggregate function changed from a count to a special sum function initialized to 0. This count(star) optimization is disabled for the full ACID table because the scanner might need to read and validate the 'currentTransaction' column in table's special schema. This patch drops 'parquet' from names related to the count star optimization. It also improves the count(star) operation in general by serving the result just from the file's footer stats for both Parquet and ORC. We unify the optimized count star and zero slot scan functions into HdfsColumnarScanner. The following table shows a performance comparison before and after the patch. primitive_count_star query target tpch10_parquet.lineitem table (10GB scale TPC-H). Meanwhile, count_star_parq and count_star_orc query is a modified primitive_count_star query that targets tpch_parquet.lineitem and tpch_orc_def.lineitem table accordingly. +-------------------+----------------------+-----------------------+--------+-------------+------------+------------+----------------+-------+----------------+---------+-------+ | Workload | Query | File Format | Avg(s) | Base Avg(s) | Delta(Avg) | StdDev(%) | Base StdDev(%) | Iters | Median Diff(%) | MW Zval | Tval | +-------------------+----------------------+-----------------------+--------+-------------+------------+------------+----------------+-------+----------------+---------+-------+ | tpch_parquet | count_star_parq | parquet / none / none | 0.06 | 0.07 | -10.45% | 2.87% | * 25.51% * | 9 | -1.47% | -1.26 | -1.22 | | tpch_orc_def | count_star_orc | orc / def / none | 0.06 | 0.08 | -22.37% | 6.22% | * 30.95% * | 9 | -1.85% | -1.16 | -2.14 | | TARGETED-PERF(10) | primitive_count_star | parquet / none / none | 0.06 | 0.08 | I -30.40% | 2.68% | * 29.63% * | 9 | I -7.20% | -2.42 | -3.07 | +-------------------+----------------------+-----------------------+--------+-------------+------------+------------+----------------+-------+----------------+---------+-------+ Testing: - Add PlannerTest.testOrcStatsAgg - Add TestAggregationQueries::test_orc_count_star_optimization - Exercise count(star) in TestOrc::test_misaligned_orc_stripes - Pass core tests Change-Id: I0fafa1182f97323aeb9ee39dd4e8ecd418fa6091 Reviewed-on: http://gerrit.cloudera.org:8080/18327 Reviewed-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com> Tested-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
772 lines
39 KiB
Python
772 lines
39 KiB
Python
#!/usr/bin/env impala-python
|
|
#
|
|
# Licensed to the Apache Software Foundation (ASF) under one
|
|
# or more contributor license agreements. See the NOTICE file
|
|
# distributed with this work for additional information
|
|
# regarding copyright ownership. The ASF licenses this file
|
|
# to you under the Apache License, Version 2.0 (the
|
|
# "License"); you may not use this file except in compliance
|
|
# with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
from tests.common.custom_cluster_test_suite import CustomClusterTestSuite
|
|
from tests.util.concurrent_workload import ConcurrentWorkload
|
|
|
|
import json
|
|
import logging
|
|
import os
|
|
import pytest
|
|
from time import sleep
|
|
|
|
LOG = logging.getLogger("test_auto_scaling")
|
|
|
|
# Non-trivial query that gets scheduled on all executors within a group.
|
|
TEST_QUERY = "select count(*) from functional.alltypes where month + random() < 3"
|
|
|
|
DEFAULT_RESOURCE_POOL = "default-pool"
|
|
|
|
|
|
class TestExecutorGroups(CustomClusterTestSuite):
|
|
"""This class contains tests that exercise the logic related to scaling clusters up and
|
|
down by adding and removing groups of executors. All tests start with a base cluster
|
|
containing a dedicated coordinator, catalog, and statestore. Tests will then start
|
|
executor groups and run queries to validate the behavior."""
|
|
|
|
def setup_method(self, method):
|
|
# Always start the base cluster with the coordinator in its own executor group.
|
|
existing_args = method.func_dict.get("impalad_args", "")
|
|
method.func_dict["impalad_args"] = "%s -executor_groups=coordinator" % existing_args
|
|
method.func_dict["cluster_size"] = 1
|
|
method.func_dict["num_exclusive_coordinators"] = 1
|
|
self.num_groups = 1
|
|
self.num_impalads = 1
|
|
super(TestExecutorGroups, self).setup_method(method)
|
|
self.coordinator = self.cluster.impalads[0]
|
|
|
|
def _group_name(self, resource_pool, name_suffix):
|
|
# By convention, group names must start with their associated resource pool name
|
|
# followed by a "-". Tests in this class mostly use the default resource pool.
|
|
return "%s-%s" % (resource_pool, name_suffix)
|
|
|
|
def _add_executor_group(self, name_suffix, min_size, num_executors=0,
|
|
admission_control_slots=0, extra_args=None,
|
|
resource_pool=DEFAULT_RESOURCE_POOL):
|
|
"""Adds an executor group to the cluster. 'min_size' specifies the minimum size for
|
|
the new group to be considered healthy. 'num_executors' specifies the number of
|
|
executors to start and defaults to 'min_size' but can be different from 'min_size' to
|
|
start an unhealthy group. 'admission_control_slots' can be used to override the
|
|
default (num cores). If 'name_suffix' is empty, no executor group is specified for
|
|
the new backends and they will end up in the default group."""
|
|
self.num_groups += 1
|
|
if num_executors == 0:
|
|
num_executors = min_size
|
|
self.num_impalads += num_executors
|
|
name = self._group_name(resource_pool, name_suffix)
|
|
LOG.info("Adding %s executors to group %s with minimum size %s" %
|
|
(num_executors, name, min_size))
|
|
cluster_args = ["--impalad_args=-admission_control_slots=%s" %
|
|
admission_control_slots]
|
|
if len(name_suffix) > 0:
|
|
cluster_args.append("--impalad_args=-executor_groups=%s:%s" % (name, min_size))
|
|
if extra_args:
|
|
cluster_args.append("--impalad_args=%s" % extra_args)
|
|
self._start_impala_cluster(options=cluster_args,
|
|
cluster_size=num_executors,
|
|
num_coordinators=0,
|
|
add_executors=True,
|
|
expected_num_impalads=self.num_impalads)
|
|
|
|
def _restart_coordinators(self, num_coordinators, extra_args=None):
|
|
"""Restarts the coordinator spawned in setup_method and enables the caller to start
|
|
more than one coordinator by specifying 'num_coordinators'"""
|
|
LOG.info("Adding a coordinator")
|
|
cluster_args = ["--impalad_args=-executor_groups=coordinator"]
|
|
if extra_args:
|
|
cluster_args.append("--impalad_args=%s" % extra_args)
|
|
self._start_impala_cluster(options=cluster_args,
|
|
cluster_size=num_coordinators,
|
|
num_coordinators=num_coordinators,
|
|
add_executors=False,
|
|
expected_num_impalads=num_coordinators,
|
|
use_exclusive_coordinators=True)
|
|
self.coordinator = self.cluster.impalads[0]
|
|
self.num_impalads = num_coordinators
|
|
|
|
def _get_total_admitted_queries(self):
|
|
"""Returns the total number of queries that have been admitted to the default resource
|
|
pool."""
|
|
return self.impalad_test_service.get_total_admitted_queries("default-pool")
|
|
|
|
def _get_num_running_queries(self):
|
|
"""Returns the number of queries that are currently running in the default resource
|
|
pool."""
|
|
return self.impalad_test_service.get_num_running_queries("default-pool")
|
|
|
|
def _wait_for_num_executor_groups(self, num_exec_grps, only_healthy=False):
|
|
"""Waits for the number of executor groups to reach 'num_exec_grps'. If 'only_healthy'
|
|
is True, only the healthy executor groups are accounted for, otherwise all groups
|
|
with at least one executor are accounted for."""
|
|
if only_healthy:
|
|
return self.coordinator.service.wait_for_metric_value(
|
|
"cluster-membership.executor-groups.total-healthy", num_exec_grps, timeout=30)
|
|
else:
|
|
return self.coordinator.service.wait_for_metric_value(
|
|
"cluster-membership.executor-groups.total", num_exec_grps, timeout=30)
|
|
|
|
def _get_num_executor_groups(self, only_healthy=False, exec_group_set_prefix=None):
|
|
"""Returns the number of executor groups with at least one executor. If
|
|
'only_healthy' is True, only the number of healthy executor groups is returned.
|
|
If exec_group_set_prefix is used, it returns the metric corresponding to that
|
|
executor group set."""
|
|
metric_name = ""
|
|
if exec_group_set_prefix is None:
|
|
if only_healthy:
|
|
metric_name = "cluster-membership.executor-groups.total-healthy"
|
|
else:
|
|
metric_name = "cluster-membership.executor-groups.total"
|
|
else:
|
|
if only_healthy:
|
|
metric_name = "cluster-membership.group-set.executor-groups.total-healthy.{0}"\
|
|
.format(exec_group_set_prefix)
|
|
else:
|
|
metric_name = "cluster-membership.group-set.executor-groups.total.{0}"\
|
|
.format(exec_group_set_prefix)
|
|
return self.coordinator.service.get_metric_value(metric_name)
|
|
|
|
def _get_num_queries_executing_for_exec_group(self, group_name_prefix):
|
|
"""Returns the number of queries running on the executor group 'group_name_prefix'.
|
|
None is returned if the group has no executors or does not exist."""
|
|
METRIC_PREFIX = "admission-controller.executor-group.num-queries-executing.{0}"
|
|
return self.coordinator.service.get_metric_value(
|
|
METRIC_PREFIX.format(self._group_name(DEFAULT_RESOURCE_POOL, group_name_prefix)))
|
|
|
|
def _assert_eventually_in_profile(self, query_handle, expected_str):
|
|
"""Assert with a timeout of 60 sec and a polling interval of 1 sec that the
|
|
expected_str exists in the query profile."""
|
|
self.assert_eventually(
|
|
60, 1, lambda: expected_str in self.client.get_runtime_profile(query_handle))
|
|
|
|
@pytest.mark.execute_serially
|
|
@CustomClusterTestSuite.with_args(impalad_args="-queue_wait_timeout_ms=1000")
|
|
def test_no_group(self):
|
|
"""Tests that a regular query submitted to a coordinator with no executor group
|
|
times out but coordinator only queries can still run."""
|
|
result = self.execute_query_expect_failure(self.client, TEST_QUERY)
|
|
assert "Admission for query exceeded timeout" in str(result)
|
|
assert self._get_num_executor_groups(only_healthy=True) == 0
|
|
expected_group = "Executor Group: empty group (using coordinator only)"
|
|
# Force the query to run on coordinator only.
|
|
result = self.execute_query_expect_success(self.client, TEST_QUERY,
|
|
query_options={'NUM_NODES': '1'})
|
|
assert expected_group in str(result.runtime_profile)
|
|
# Small query runs on coordinator only.
|
|
result = self.execute_query_expect_success(self.client, "select 1")
|
|
assert expected_group in str(result.runtime_profile)
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_single_group(self):
|
|
"""Tests that we can start a single executor group and run a simple query."""
|
|
self._add_executor_group("group1", 2)
|
|
self.execute_query_expect_success(self.client, TEST_QUERY)
|
|
assert self._get_num_executor_groups(only_healthy=True) == 1
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_executor_group_starts_while_qeueud(self):
|
|
"""Tests that a query can stay in the queue of an empty cluster until an executor
|
|
group comes online."""
|
|
client = self.client
|
|
handle = client.execute_async(TEST_QUERY)
|
|
self._assert_eventually_in_profile(handle, "Waiting for executors to start")
|
|
assert self._get_num_executor_groups(only_healthy=True) == 0
|
|
self._add_executor_group("group1", 2)
|
|
client.wait_for_finished_timeout(handle, 20)
|
|
assert self._get_num_executor_groups(only_healthy=True) == 1
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_executor_group_health(self):
|
|
"""Tests that an unhealthy executor group will not run queries."""
|
|
# Start cluster and group
|
|
self._add_executor_group("group1", 2)
|
|
self._wait_for_num_executor_groups(1, only_healthy=True)
|
|
client = self.client
|
|
# Run query to validate
|
|
self.execute_query_expect_success(client, TEST_QUERY)
|
|
# Kill an executor
|
|
executor = self.cluster.impalads[1]
|
|
executor.kill()
|
|
self.coordinator.service.wait_for_metric_value("cluster-membership.backends.total", 2,
|
|
timeout=20)
|
|
assert self._get_num_executor_groups(only_healthy=True) == 0
|
|
# Run query and observe timeout
|
|
handle = client.execute_async(TEST_QUERY)
|
|
self._assert_eventually_in_profile(handle, "Waiting for executors to start")
|
|
# Restart executor
|
|
executor.start()
|
|
# Query should now finish
|
|
client.wait_for_finished_timeout(handle, 20)
|
|
# Run query and observe success
|
|
self.execute_query_expect_success(client, TEST_QUERY)
|
|
self._wait_for_num_executor_groups(1, only_healthy=True)
|
|
|
|
@pytest.mark.execute_serially
|
|
@CustomClusterTestSuite.with_args(impalad_args="-default_pool_max_requests=1")
|
|
def test_executor_group_shutdown(self):
|
|
"""Tests that an executor group can shutdown and a query in the queue can still run
|
|
successfully when the group gets restored."""
|
|
self._add_executor_group("group1", 2)
|
|
client = self.client
|
|
q1 = client.execute_async("select sleep(5000)")
|
|
q2 = client.execute_async("select sleep(3)")
|
|
# Verify that q2 is queued up behind q1
|
|
self._assert_eventually_in_profile(
|
|
q2, "Initial admission queue reason: number of running queries")
|
|
# Kill an executor
|
|
executor = self.cluster.impalads[1]
|
|
executor.kill()
|
|
self.coordinator.service.wait_for_metric_value("cluster-membership.backends.total", 2)
|
|
# Wait for q1 to finish (sleep runs on the coordinator)
|
|
client.wait_for_finished_timeout(q1, 20)
|
|
# Check that q2 still hasn't run
|
|
profile = client.get_runtime_profile(q2)
|
|
assert "Admission result: Queued" in profile, profile
|
|
assert self._get_num_executor_groups(only_healthy=True) == 0
|
|
# Restore executor group health
|
|
executor.start()
|
|
# Query should now finish
|
|
client.wait_for_finished_timeout(q2, 20)
|
|
assert self._get_num_executor_groups(only_healthy=True) == 1
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_admission_slots(self):
|
|
"""Tests that the admission_control_slots flag works as expected to
|
|
specify the number of admission slots on the executors."""
|
|
self._add_executor_group("group1", 2, admission_control_slots=1)
|
|
# Query that runs on every executor
|
|
QUERY = "select * from functional_parquet.alltypestiny \
|
|
where month < 3 and id + random() < sleep(500);"
|
|
client = self.client
|
|
q1 = client.execute_async(QUERY)
|
|
client.wait_for_admission_control(q1)
|
|
q2 = client.execute_async(QUERY)
|
|
self._assert_eventually_in_profile(q2, "Initial admission queue reason: Not enough "
|
|
"admission control slots available on host")
|
|
client.cancel(q1)
|
|
client.cancel(q2)
|
|
|
|
# Test that a query that would occupy too many slots gets rejected
|
|
result = self.execute_query_expect_failure(self.client,
|
|
"select min(ss_list_price) from tpcds_parquet.store_sales", {'mt_dop': 64})
|
|
assert "number of admission control slots needed" in str(result)
|
|
assert "is greater than total slots available" in str(result)
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_multiple_executor_groups(self):
|
|
"""Tests that two queries can run on two separate executor groups simultaneously."""
|
|
# Query that runs on every executor
|
|
QUERY = "select * from functional_parquet.alltypestiny \
|
|
where month < 3 and id + random() < sleep(500);"
|
|
self._add_executor_group("group1", 2, admission_control_slots=1)
|
|
self._add_executor_group("group2", 2, admission_control_slots=1)
|
|
self._wait_for_num_executor_groups(2, only_healthy=True)
|
|
client = self.client
|
|
q1 = client.execute_async(QUERY)
|
|
client.wait_for_admission_control(q1)
|
|
q2 = client.execute_async(QUERY)
|
|
client.wait_for_admission_control(q2)
|
|
profiles = [client.get_runtime_profile(q) for q in (q1, q2)]
|
|
assert not any("Initial admission queue reason" in p for p in profiles), profiles
|
|
client.cancel(q1)
|
|
client.cancel(q2)
|
|
|
|
@pytest.mark.execute_serially
|
|
@CustomClusterTestSuite.with_args(impalad_args="-admission_control_slots=1")
|
|
def test_coordinator_concurrency(self):
|
|
"""Tests that the command line flag to limit the coordinator concurrency works as
|
|
expected."""
|
|
QUERY = "select sleep(1000)"
|
|
# Add group with more slots than coordinator
|
|
self._add_executor_group("group2", 2, admission_control_slots=3)
|
|
# Try to run two queries and observe that one gets queued
|
|
client = self.client
|
|
q1 = client.execute_async(QUERY)
|
|
client.wait_for_admission_control(q1)
|
|
q2 = client.execute_async(QUERY)
|
|
self._assert_eventually_in_profile(q2, "Initial admission queue reason")
|
|
client.cancel(q1)
|
|
client.cancel(q2)
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_executor_concurrency(self):
|
|
"""Tests that the command line flag to limit query concurrency on executors works as
|
|
expected."""
|
|
# Query that runs on every executor
|
|
QUERY = "select * from functional_parquet.alltypestiny \
|
|
where month < 3 and id + random() < sleep(500);"
|
|
self._add_executor_group("group1", 2, admission_control_slots=3)
|
|
|
|
workload = None
|
|
try:
|
|
workload = ConcurrentWorkload(QUERY, num_streams=5)
|
|
LOG.info("Starting workload")
|
|
workload.start()
|
|
|
|
RAMP_UP_TIMEOUT_S = 60
|
|
# Wait until we admitted at least 10 queries
|
|
assert any(self._get_total_admitted_queries() >= 10 or sleep(1)
|
|
for _ in range(RAMP_UP_TIMEOUT_S)), \
|
|
"Did not admit enough queries within %s s" % RAMP_UP_TIMEOUT_S
|
|
|
|
# Sample the number of admitted queries on each backend for while.
|
|
# Note that the total number of queries in the cluster can higher
|
|
# than 3 because resources may be released on some backends, allowing
|
|
# a new query to fit (see IMPALA-9073).
|
|
NUM_SAMPLES = 30
|
|
executor_slots_in_use = []
|
|
for _ in xrange(NUM_SAMPLES):
|
|
backends_json = json.loads(
|
|
self.impalad_test_service.read_debug_webpage('backends?json'))
|
|
for backend in backends_json['backends']:
|
|
if backend['is_executor']:
|
|
executor_slots_in_use.append(backend['admission_slots_in_use'])
|
|
sleep(1)
|
|
|
|
# Must reach 3 but not exceed it
|
|
assert max(executor_slots_in_use) == 3, \
|
|
"Unexpected number of slots in use: %s" % executor_slots_in_use
|
|
|
|
finally:
|
|
LOG.info("Stopping workload")
|
|
if workload:
|
|
workload.stop()
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_sequential_startup_wait(self):
|
|
"""Tests that starting an executor group sequentially works as expected, i.e. queries
|
|
don't fail and no queries are admitted until the group is in a healthy state."""
|
|
# Start first executor
|
|
self._add_executor_group("group1", 3, num_executors=1)
|
|
self.coordinator.service.wait_for_metric_value("cluster-membership.backends.total", 2)
|
|
assert self._get_num_executor_groups() == 1
|
|
assert self._get_num_executor_groups(only_healthy=True) == 0
|
|
# Run query and observe that it gets queued
|
|
client = self.client
|
|
handle = client.execute_async(TEST_QUERY)
|
|
self._assert_eventually_in_profile(handle, "Initial admission queue reason:"
|
|
" Waiting for executors to start")
|
|
initial_state = client.get_state(handle)
|
|
# Start another executor and observe that the query stays queued
|
|
self._add_executor_group("group1", 3, num_executors=1)
|
|
self.coordinator.service.wait_for_metric_value("cluster-membership.backends.total", 3)
|
|
assert self._get_num_executor_groups(only_healthy=True) == 0
|
|
assert client.get_state(handle) == initial_state
|
|
# Start the remaining executor and observe that the query finishes
|
|
self._add_executor_group("group1", 3, num_executors=1)
|
|
self.coordinator.service.wait_for_metric_value("cluster-membership.backends.total", 4)
|
|
assert self._get_num_executor_groups(only_healthy=True) == 1
|
|
client.wait_for_finished_timeout(handle, 20)
|
|
|
|
@pytest.mark.execute_serially
|
|
@CustomClusterTestSuite.with_args(impalad_args="-queue_wait_timeout_ms=2000")
|
|
def test_empty_default_group(self):
|
|
"""Tests that an empty default group is correctly marked as non-healthy and excluded
|
|
from scheduling."""
|
|
# Start default executor group
|
|
self._add_executor_group("", min_size=2, num_executors=2,
|
|
admission_control_slots=3)
|
|
# Run query to make sure things work
|
|
self.execute_query_expect_success(self.client, TEST_QUERY)
|
|
assert self._get_num_executor_groups(only_healthy=True) == 1
|
|
# Kill executors to make group empty
|
|
impalads = self.cluster.impalads
|
|
impalads[1].kill()
|
|
impalads[2].kill()
|
|
self.coordinator.service.wait_for_metric_value("cluster-membership.backends.total", 1)
|
|
# Run query to make sure it times out
|
|
result = self.execute_query_expect_failure(self.client, TEST_QUERY)
|
|
expected_error = "Query aborted:Admission for query exceeded timeout 2000ms in " \
|
|
"pool default-pool. Queued reason: Waiting for executors to " \
|
|
"start. Only DDL queries and queries scheduled only on the " \
|
|
"coordinator (either NUM_NODES set to 1 or when small query " \
|
|
"optimization is triggered) can currently run."
|
|
assert expected_error in str(result)
|
|
assert self._get_num_executor_groups(only_healthy=True) == 0
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_executor_group_num_queries_executing_metric(self):
|
|
"""Tests the functionality of the metric keeping track of the query load of executor
|
|
groups."""
|
|
# Query that runs on every executor
|
|
QUERY = "select * from functional_parquet.alltypestiny \
|
|
where month < 3 and id + random() < sleep(500);"
|
|
group_names = ["group1", "group2"]
|
|
self._add_executor_group(group_names[0], min_size=1, num_executors=1,
|
|
admission_control_slots=1)
|
|
# Create an exec group of min size 2 to exercise the case where a group becomes
|
|
# unhealthy.
|
|
self._add_executor_group(group_names[1], min_size=2, num_executors=2,
|
|
admission_control_slots=1)
|
|
self._wait_for_num_executor_groups(2, only_healthy=True)
|
|
# Verify metrics for both groups appear.
|
|
assert all(
|
|
self._get_num_queries_executing_for_exec_group(name) == 0 for name in group_names)
|
|
|
|
# First query will run on the first group. Verify the metric updates accordingly.
|
|
client = self.client
|
|
q1 = client.execute_async(QUERY)
|
|
client.wait_for_admission_control(q1)
|
|
assert self._get_num_queries_executing_for_exec_group(group_names[0]) == 1
|
|
assert self._get_num_queries_executing_for_exec_group(group_names[1]) == 0
|
|
|
|
# Similarly verify the metric updates accordingly when a query runs on the next group.
|
|
q2 = client.execute_async(QUERY)
|
|
client.wait_for_admission_control(q2)
|
|
assert self._get_num_queries_executing_for_exec_group(group_names[0]) == 1
|
|
assert self._get_num_queries_executing_for_exec_group(group_names[1]) == 1
|
|
|
|
# Close both queries and verify metrics are updated accordingly.
|
|
client.close_query(q1)
|
|
client.close_query(q2)
|
|
assert all(
|
|
self._get_num_queries_executing_for_exec_group(name) == 0 for name in group_names)
|
|
|
|
# Kill an executor from group2 to make that group unhealthy, then verify that the
|
|
# metric is still there.
|
|
self.cluster.impalads[-1].kill()
|
|
self._wait_for_num_executor_groups(1, only_healthy=True)
|
|
assert self._get_num_executor_groups() == 2
|
|
assert all(
|
|
self._get_num_queries_executing_for_exec_group(name) == 0 for name in group_names)
|
|
|
|
# Kill the last executor from group2 so that it is removed from the exec group list,
|
|
# then verify that the metric disappears.
|
|
self.cluster.impalads[-2].kill()
|
|
self._wait_for_num_executor_groups(1)
|
|
assert self._get_num_queries_executing_for_exec_group(group_names[0]) == 0
|
|
assert self._get_num_queries_executing_for_exec_group(group_names[1]) is None
|
|
|
|
# Now make sure the metric accounts for already running queries that linger around
|
|
# from when the group was healthy.
|
|
# Block the query cancellation thread to allow the query to linger between exec group
|
|
# going down and coming back up.
|
|
client.set_configuration({"debug_action": "QUERY_CANCELLATION_THREAD:SLEEP@10000"})
|
|
q3 = client.execute_async(QUERY)
|
|
client.wait_for_admission_control(q3)
|
|
assert self._get_num_queries_executing_for_exec_group(group_names[0]) == 1
|
|
impalad_grp1 = self.cluster.impalads[-3]
|
|
impalad_grp1.kill()
|
|
self._wait_for_num_executor_groups(0)
|
|
assert self._get_num_queries_executing_for_exec_group(group_names[0]) is None
|
|
impalad_grp1.start()
|
|
self._wait_for_num_executor_groups(1, only_healthy=True)
|
|
assert self._get_num_queries_executing_for_exec_group(group_names[0]) == 1, \
|
|
"The lingering query should be accounted for when the group comes back up."
|
|
client.cancel(q3)
|
|
self.coordinator.service.wait_for_metric_value(
|
|
"admission-controller.executor-group.num-queries-executing.{0}".format(
|
|
self._group_name(DEFAULT_RESOURCE_POOL, group_names[0])), 0, timeout=30)
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_join_strategy_single_executor(self):
|
|
"""Tests that the planner picks the correct join strategy based on the current cluster
|
|
size. This test uses an executor group with a minimum size of 1."""
|
|
TABLE = "functional.alltypes"
|
|
QUERY = "explain select * from %s a inner join %s b on a.id = b.id" % (TABLE, TABLE)
|
|
|
|
# Predicates to assert that a certain join type was picked.
|
|
def assert_broadcast_join():
|
|
ret = self.execute_query_expect_success(self.client, QUERY)
|
|
assert ":EXCHANGE [BROADCAST]" in str(ret)
|
|
|
|
def assert_hash_join():
|
|
ret = self.execute_query_expect_success(self.client, QUERY)
|
|
assert ":EXCHANGE [HASH(b.id)]" in str(ret)
|
|
|
|
# Without any executors we default to a hash join.
|
|
assert_hash_join()
|
|
|
|
# Add a healthy executor group of size 1 and observe that we switch to broadcast join.
|
|
self._add_executor_group("group1", min_size=1, num_executors=1)
|
|
assert_broadcast_join()
|
|
|
|
# Add another executor to the same group and observe that with two executors we pick a
|
|
# partitioned hash join.
|
|
self._add_executor_group("group1", min_size=1, num_executors=1)
|
|
assert_hash_join()
|
|
|
|
# Kill an executor. The group remains healthy but its size decreases and we revert
|
|
# back to a broadcast join.
|
|
self.cluster.impalads[-1].kill()
|
|
self.coordinator.service.wait_for_metric_value("cluster-membership.backends.total", 2,
|
|
timeout=20)
|
|
assert_broadcast_join()
|
|
|
|
# Kill a second executor. The group becomes unhealthy and we go back to using the
|
|
# expected size to plan which would result in a hash join
|
|
self.cluster.impalads[-2].kill()
|
|
self.coordinator.service.wait_for_metric_value("cluster-membership.backends.total", 1,
|
|
timeout=20)
|
|
assert_hash_join()
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_join_strategy_multiple_executors(self):
|
|
"""Tests that the planner picks the correct join strategy based on the current cluster
|
|
size. This test uses an executor group which requires multiple executors to be
|
|
healthy."""
|
|
TABLE = "functional.alltypes"
|
|
QUERY = "explain select * from %s a inner join %s b on a.id = b.id" % (TABLE, TABLE)
|
|
|
|
# Predicate to assert that the planner decided on a hash join.
|
|
def assert_hash_join():
|
|
ret = self.execute_query_expect_success(self.client, QUERY)
|
|
assert ":EXCHANGE [HASH(b.id)]" in str(ret)
|
|
|
|
# Without any executors we default to a hash join.
|
|
assert_hash_join()
|
|
|
|
# Adding an unhealthy group will not affect the planner's decision.
|
|
self._add_executor_group("group1", min_size=2, num_executors=1)
|
|
assert_hash_join()
|
|
|
|
# Adding a second executor makes the group healthy (note that the resulting join
|
|
# strategy is the same though).
|
|
self._add_executor_group("group1", min_size=2, num_executors=1)
|
|
assert_hash_join()
|
|
|
|
# Kill an executor. The unhealthy group does not affect the planner's decision, even
|
|
# though only one executor is now online.
|
|
self.cluster.impalads[-1].kill()
|
|
self.coordinator.service.wait_for_metric_value("cluster-membership.backends.total", 2,
|
|
timeout=20)
|
|
assert_hash_join()
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_admission_control_with_multiple_coords(self):
|
|
"""This test verifies that host level metrics like the num of admission slots used
|
|
and memory admitted is disseminated correctly across the cluster and accounted for
|
|
while making admission decisions. We run a query that takes up all of a particular
|
|
resource (slots or memory) and check if attempting to run a query on the other
|
|
coordinator results in queuing."""
|
|
# A long running query that runs on every executor
|
|
QUERY = "select * from functional_parquet.alltypes \
|
|
where month < 3 and id + random() < sleep(100);"
|
|
# default_pool_mem_limit is set to enable mem based admission.
|
|
self._restart_coordinators(num_coordinators=2,
|
|
extra_args="-default_pool_mem_limit=100g")
|
|
# Create fresh clients
|
|
second_coord_client = self.create_client_for_nth_impalad(1)
|
|
self.create_impala_clients()
|
|
# Add an exec group with a 4gb mem_limit.
|
|
self._add_executor_group("group1", 2, admission_control_slots=2,
|
|
extra_args="-mem_limit=4g")
|
|
assert self._get_num_executor_groups(only_healthy=True) == 1
|
|
second_coord_client.set_configuration({'mt_dop': '2'})
|
|
handle_for_second = second_coord_client.execute_async(QUERY)
|
|
# Verify that the first coordinator knows about the query running on the second
|
|
self.coordinator.service.wait_for_metric_value(
|
|
"admission-controller.agg-num-running.default-pool", 1, timeout=30)
|
|
handle_for_first = self.execute_query_async(TEST_QUERY)
|
|
self.coordinator.service.wait_for_metric_value(
|
|
"admission-controller.local-num-queued.default-pool", 1, timeout=30)
|
|
profile = self.client.get_runtime_profile(handle_for_first)
|
|
assert "queue reason: Not enough admission control slots available on host" in \
|
|
profile, profile
|
|
self.close_query(handle_for_first)
|
|
second_coord_client.close_query(handle_for_second)
|
|
# Wait for first coordinator to get the admission update.
|
|
self.coordinator.service.wait_for_metric_value(
|
|
"admission-controller.agg-num-running.default-pool", 0, timeout=30)
|
|
# Now verify that mem based admission also works as intended. A max of mem_reserved
|
|
# and mem_admitted is used for this. Since mem_limit is being used here, both will be
|
|
# identical but this will at least test that code path as a sanity check.
|
|
second_coord_client.clear_configuration()
|
|
second_coord_client.set_configuration({'mem_limit': '4g'})
|
|
handle_for_second = second_coord_client.execute_async(QUERY)
|
|
# Verify that the first coordinator knows about the query running on the second
|
|
self.coordinator.service.wait_for_metric_value(
|
|
"admission-controller.agg-num-running.default-pool", 1, timeout=30)
|
|
handle_for_first = self.execute_query_async(TEST_QUERY)
|
|
self.coordinator.service.wait_for_metric_value(
|
|
"admission-controller.local-num-queued.default-pool", 1, timeout=30)
|
|
profile = self.client.get_runtime_profile(handle_for_first)
|
|
assert "queue reason: Not enough memory available on host" in profile, profile
|
|
self.close_query(handle_for_first)
|
|
second_coord_client.close_query(handle_for_second)
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_admission_control_with_multiple_coords_and_exec_groups(self):
|
|
"""This test verifies that admission control accounting works when using multiple
|
|
coordinators and multiple executor groups mapped to different resource pools and
|
|
having different sizes."""
|
|
# A long running query that runs on every executor
|
|
LONG_QUERY = "select * from functional_parquet.alltypes \
|
|
where month < 3 and id + random() < sleep(100);"
|
|
# The path to resources directory which contains the admission control config files.
|
|
RESOURCES_DIR = os.path.join(os.environ['IMPALA_HOME'], "fe", "src", "test",
|
|
"resources")
|
|
fs_allocation_path = os.path.join(RESOURCES_DIR, "fair-scheduler-allocation.xml")
|
|
llama_site_path = os.path.join(RESOURCES_DIR, "llama-site-empty.xml")
|
|
# Start with a regular admission config with multiple pools and no resource limits.
|
|
self._restart_coordinators(num_coordinators=2,
|
|
extra_args="-vmodule admission-controller=3 "
|
|
"-expected_executor_group_sets=root.queue1:2,root.queue2:1 "
|
|
"-fair_scheduler_allocation_path %s "
|
|
"-llama_site_path %s" % (
|
|
fs_allocation_path, llama_site_path))
|
|
|
|
# Create fresh clients
|
|
second_coord_client = self.create_client_for_nth_impalad(1)
|
|
self.create_impala_clients()
|
|
# Add an exec group with a single admission slot and 2 executors.
|
|
self._add_executor_group("group", 2, admission_control_slots=1,
|
|
resource_pool="root.queue1", extra_args="-mem_limit=2g")
|
|
# Add an exec group with a single admission slot and only 1 executor.
|
|
self._add_executor_group("group", 1, admission_control_slots=1,
|
|
resource_pool="root.queue2", extra_args="-mem_limit=2g")
|
|
assert self._get_num_executor_groups(only_healthy=True) == 2
|
|
assert self._get_num_executor_groups(only_healthy=True,
|
|
exec_group_set_prefix="root.queue1") == 1
|
|
assert self._get_num_executor_groups(only_healthy=True,
|
|
exec_group_set_prefix="root.queue2") == 1
|
|
|
|
# Execute a long running query on group 'queue1'
|
|
self.client.set_configuration({'request_pool': 'queue1'})
|
|
handle_long_running_queue1 = self.execute_query_async(LONG_QUERY)
|
|
self.coordinator.service.wait_for_metric_value(
|
|
"admission-controller.executor-group.num-queries-executing.root.queue1-group",
|
|
1, timeout=30)
|
|
profile = self.client.get_runtime_profile(handle_long_running_queue1)
|
|
"Executor Group: root.queue1-group" in profile
|
|
|
|
# Try to execute another query on group 'queue1'. This one should queue.
|
|
handle_queued_query_queue1 = self.execute_query_async(TEST_QUERY)
|
|
self.coordinator.service.wait_for_metric_value(
|
|
"admission-controller.local-num-queued.root.queue1", 1, timeout=30)
|
|
profile = self.client.get_runtime_profile(handle_queued_query_queue1)
|
|
assert "queue reason: Not enough admission control slots available on host" in \
|
|
profile, profile
|
|
|
|
# Execute a query on group 'queue2'. This one will run as its running in another pool.
|
|
result = self.execute_query_expect_success(self.client, TEST_QUERY,
|
|
query_options={'request_pool': 'queue2'})
|
|
assert "Executor Group: root.queue2-group" in str(result.runtime_profile)
|
|
|
|
# Verify that multiple coordinators' accounting still works correctly in case of
|
|
# multiple executor groups.
|
|
|
|
# Run a query in group 'queue2' on the second coordinator
|
|
second_coord_client.set_configuration({'request_pool': 'queue2'})
|
|
second_coord_client.execute_async(LONG_QUERY)
|
|
# Verify that the first coordinator knows about the query running on the second
|
|
self.coordinator.service.wait_for_metric_value(
|
|
"admission-controller.agg-num-running.root.queue2", 1, timeout=30)
|
|
|
|
# Check that attempting to run another query in 'queue2' will queue the query.
|
|
self.client.set_configuration({'request_pool': 'queue2'})
|
|
handle_queued_query_queue2 = self.execute_query_async(TEST_QUERY)
|
|
self.coordinator.service.wait_for_metric_value(
|
|
"admission-controller.local-num-queued.root.queue2", 1, timeout=30)
|
|
profile = self.client.get_runtime_profile(handle_queued_query_queue2)
|
|
assert "queue reason: Not enough admission control slots available on host" in \
|
|
profile, profile
|
|
|
|
self.client.close()
|
|
second_coord_client.close()
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_query_assignment_with_two_exec_groups(self):
|
|
"""This test verifies that query assignment works with two executor groups with
|
|
different number of executors and memory limit in each."""
|
|
# A small query with estimated memory per host of 10MB that can run on the small
|
|
# executor group
|
|
SMALL_QUERY = "select count(*) from tpcds_parquet.date_dim where d_year=2022;"
|
|
# A large query with estimated memory per host of 132MB that can only run on
|
|
# the large executor group.
|
|
LARGE_QUERY = "select * from tpcds_parquet.store_sales where ss_item_sk = 1 limit 50;"
|
|
# The path to resources directory which contains the admission control config files.
|
|
RESOURCES_DIR = os.path.join(os.environ['IMPALA_HOME'], "fe", "src", "test",
|
|
"resources")
|
|
# Define two group sets: small and large
|
|
fs_allocation_path = os.path.join(RESOURCES_DIR, "fair-scheduler-2-groups.xml")
|
|
# Define the min-query-mem-limit and max-query-mem-limit properties of the two sets:
|
|
# small: [0, 64MB]
|
|
# large: [64MB+1Byte, 8PB]
|
|
llama_site_path = os.path.join(RESOURCES_DIR, "llama-site-2-groups.xml")
|
|
# Start with a regular admission config with multiple pools and no resource limits.
|
|
self._restart_coordinators(num_coordinators=1,
|
|
extra_args="-vmodule admission-controller=3 "
|
|
"-expected_executor_group_sets=root.small:2,root.large:3 "
|
|
"-fair_scheduler_allocation_path %s "
|
|
"-llama_site_path %s" % (
|
|
fs_allocation_path, llama_site_path))
|
|
|
|
# Create fresh client
|
|
self.create_impala_clients()
|
|
# Add an exec group with a single admission slot and 2 executors.
|
|
self._add_executor_group("group", 2, admission_control_slots=1,
|
|
resource_pool="root.small", extra_args="-mem_limit=2g")
|
|
# Add another exec group with a single admission slot and 3 executors.
|
|
self._add_executor_group("group", 3, admission_control_slots=1,
|
|
resource_pool="root.large", extra_args="-mem_limit=2g")
|
|
assert self._get_num_executor_groups(only_healthy=True) == 2
|
|
assert self._get_num_executor_groups(only_healthy=True,
|
|
exec_group_set_prefix="root.small") == 1
|
|
assert self._get_num_executor_groups(only_healthy=True,
|
|
exec_group_set_prefix="root.large") == 1
|
|
|
|
# Expect to run the small query on the small group
|
|
result = self.execute_query_expect_success(self.client, SMALL_QUERY)
|
|
assert "Executor Group: root.small-group" in str(result.runtime_profile)
|
|
|
|
# Expect to run the large query on the large group
|
|
result = self.execute_query_expect_success(self.client, LARGE_QUERY)
|
|
assert "Executor Group: root.large-group" in str(result.runtime_profile)
|
|
|
|
# Force to run the large query on the small group should fail
|
|
self.client.set_configuration({'request_pool': 'small'})
|
|
result = self.execute_query_expect_failure(self.client, LARGE_QUERY)
|
|
assert "The query does not fit any executor group set" in str(result)
|
|
|
|
self.client.close()
|
|
|
|
@pytest.mark.execute_serially
|
|
def test_per_exec_group_set_metrics(self):
|
|
"""This test verifies that the metrics for each exec group set are updated
|
|
appropriately."""
|
|
self._restart_coordinators(num_coordinators=1,
|
|
extra_args="-expected_executor_group_sets=root.queue1:2,root.queue2:1")
|
|
|
|
# Add an unhealthy exec group in queue1 group set
|
|
self._add_executor_group("group", 2, num_executors=1,
|
|
resource_pool="root.queue1", extra_args="-mem_limit=2g")
|
|
assert self._get_num_executor_groups(only_healthy=True,
|
|
exec_group_set_prefix="root.queue1") == 0
|
|
assert self._get_num_executor_groups(exec_group_set_prefix="root.queue1") == 1
|
|
assert self.coordinator.service.get_metric_value(
|
|
"cluster-membership.group-set.backends.total.root.queue1") == 1
|
|
|
|
# Add another executor to the previous group to make healthy again
|
|
self._add_executor_group("group", 2, num_executors=1,
|
|
resource_pool="root.queue1", extra_args="-mem_limit=2g")
|
|
assert self._get_num_executor_groups(only_healthy=True,
|
|
exec_group_set_prefix="root.queue1") == 1
|
|
assert self._get_num_executor_groups(exec_group_set_prefix="root.queue1") == 1
|
|
assert self.coordinator.service.get_metric_value(
|
|
"cluster-membership.group-set.backends.total.root.queue1") == 2
|
|
|
|
# Add a healthy exec group in queue2 group set
|
|
self._add_executor_group("group", 1,
|
|
resource_pool="root.queue2", extra_args="-mem_limit=2g")
|
|
assert self._get_num_executor_groups(only_healthy=True,
|
|
exec_group_set_prefix="root.queue2") == 1
|
|
assert self._get_num_executor_groups(exec_group_set_prefix="root.queue2") == 1
|
|
assert self.coordinator.service.get_metric_value(
|
|
"cluster-membership.group-set.backends.total.root.queue2") == 1
|