This extends statemgr.Persistent, statemgr.Locker and remote.Client to
all expect context.Context parameters, and then updates all of the existing
implementations of those interfaces to support them.
All of the calls to statemgr.Persistent and statemgr.Locker methods outside
of tests are consistently context.TODO() for now, because the caller
landscape of these interfaces has some complications:
1. statemgr.Locker is also used by the clistate package for its state
implementation that was derived from statemgr.Filesystem's predecessor,
even though what clistate manages is not actually "state" in the sense
of package statemgr. The callers of that are not yet ready to provide
real contexts.
In a future commit we'll either need to plumb context through to all of
the clistate callers, or continue the effort to separate statemgr from
clistate by introducing a clistate-specific "locker" API for it
to use instead.
2. We call statemgr.Persistent and statemgr.Locker methods in situations
where the active context might have already been cancelled, and so we'll
need to make sure to ignore cancellation when calling those.
This is mainly limited to PersistState and Unlock, since both need to
be able to complete after a cancellation, but there are various
codepaths that perform a Lock, Refresh, Persist, Unlock sequence and so
it isn't yet clear where is the best place to enforce the invariant that
Persist and Unlock must not be called with a cancelable context. We'll
deal with that more in subsequent commits.
Within the various state manager and remote client implementations the
contexts _are_ wired together as best as possible with how these subsystems
are already laid out, and so once we deal with the problems above and make
callers provide suitable contexts they should be able to reach all of the
leaf API clients that might want to generate OpenTelemetry traces.
Signed-off-by: Martin Atkins <mart@degeneration.co.uk>
* Rename module name from "github.com/hashicorp/terraform" to "github.com/placeholderplaceholderplaceholder/opentf".
Signed-off-by: Jakub Martin <kubam@spacelift.io>
* Gofmt.
Signed-off-by: Jakub Martin <kubam@spacelift.io>
* Regenerate protobuf.
Signed-off-by: Jakub Martin <kubam@spacelift.io>
* Fix comments.
Signed-off-by: Jakub Martin <kubam@spacelift.io>
* Undo issue and pull request link changes.
Signed-off-by: Jakub Martin <kubam@spacelift.io>
* Undo comment changes.
Signed-off-by: Jakub Martin <kubam@spacelift.io>
* Fix comment.
Signed-off-by: Jakub Martin <kubam@spacelift.io>
* Undo some link changes.
Signed-off-by: Jakub Martin <kubam@spacelift.io>
* make generate && make protobuf
Signed-off-by: Jakub Martin <kubam@spacelift.io>
---------
Signed-off-by: Jakub Martin <kubam@spacelift.io>
Previously we just always used the same intermediate state persistence
behavior for all state storages. However, some storages might have access
to additional information that allows them to tailor when they persist,
such as reacting to API rate limit status headers in responses, or just
knowing that a particular storage isn't suited to intermediate snapshots
at all for some reason.
This commit doesn't actually change any observable behavior yet, but it
introduces an optional means for a state storage to customize the behavior
which we may make use of in certain storage implementations in future
commits.
Terraform Core emits a hook event every time it writes a change into the
in-memory state. Previously the local backend would just copy that into
the transient storage of the state manager, but for most state storage
implementations that doesn't really do anything useful because it just
makes another copy of the state in memory.
We originally added this hook mechanism with the intent of making
Terraform _persist_ the state each time, but we backed that out after
finding that it was a bit too aggressive and was making the state snapshot
history much harder to use in storage systems that can preserve historical
snapshots.
However, sometimes Terraform gets killed mid-apply for whatever reason and
in our previous implementation that meant always losing that transient
state, forcing the user to edit the state manually (or use "import") to
recover a useful state.
In an attempt at finding a sweet spot between these extremes, here we
change the rule so that if an apply runs for longer than 20 seconds then
we'll try to persist the state to the backend in an update that arrives
at least 20 seconds after the first update, and then again for each
additional 20 second period as long as Terraform keeps announcing new
state snapshots.
This also introduces a special interruption mode where if the apply phase
gets interrupted by SIGINT (or equivalent) then the local backend will
try to persist the state immediately in anticipation of a
possibly-imminent SIGKILL, and will then immediately persist any
subsequent state update that arrives until the apply phase is complete.
After interruption Terraform will not start any new operations and will
instead just let any already-running operations run to completion, and so
this will persist the state once per resource instance that is able to
complete before being killed.
This does mean that now long-running applies will generate intermediate
state snapshots where they wouldn't before, but there should still be
considerably fewer snapshots than were created when we were persisting
for each individual state change. We can adjust the 20 second interval
in future commits if we find that this spot isn't as sweet as first
assumed.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.