Files
opentf/command/plan.go
Alisdair McDiarmid 86495f93cb views: Fix missing source in diagnostic output
The previous implementation of views was copying and embedding the base
View struct in each individual view. While this allowed for easy access
to the interface of that struct (both in the view and externally), it more
importantly completely broke the ability of the diagnostic printer to
output source code snippets.

This is because the `configSources` field on the base view is lazily set
after the config loader is initialized. In the commands ported to use
views, this happens after the base View struct is copied, so we are
updating the wrong copy of the struct.

This commit fixes this with a simple mechanical refactor: keep a pointer
to the base View struct instead, and update all of the individual views
to explicitly refer to that struct to access its fields and methods.

This is not a particularly satisfying solution, but I can't find
anything clearly better. It might be worth exploring the alternative
approach in the view for the new test command, which explicitly pulls
its dependencies out of the base view, rather than retaining a full
reference. Maybe there's a third way which is better still.
2021-02-26 16:43:03 -05:00

245 lines
7.6 KiB
Go

package command
import (
"fmt"
"strings"
"github.com/hashicorp/terraform/backend"
"github.com/hashicorp/terraform/command/arguments"
"github.com/hashicorp/terraform/command/views"
"github.com/hashicorp/terraform/tfdiags"
)
// PlanCommand is a Command implementation that compares a Terraform
// configuration to an actual infrastructure and shows the differences.
type PlanCommand struct {
Meta
}
func (c *PlanCommand) Run(rawArgs []string) int {
// Parse and apply global view arguments
common, rawArgs := arguments.ParseView(rawArgs)
c.View.Configure(common)
// Parse and validate flags
args, diags := arguments.ParsePlan(rawArgs)
// Instantiate the view, even if there are flag errors, so that we render
// diagnostics according to the desired view
view := views.NewPlan(args.ViewType, c.RunningInAutomation, c.View)
if diags.HasErrors() {
view.Diagnostics(diags)
view.HelpPrompt()
return 1
}
// Check for user-supplied plugin path
var err error
if c.pluginPath, err = c.loadPluginPath(); err != nil {
diags = diags.Append(err)
view.Diagnostics(diags)
return 1
}
// FIXME: the -input flag value is needed to initialize the backend and the
// operation, but there is no clear path to pass this value down, so we
// continue to mutate the Meta object state for now.
c.Meta.input = args.InputEnabled
// FIXME: the -parallelism flag is used to control the concurrency of
// Terraform operations. At the moment, this value is used both to
// initialize the backend via the ContextOpts field inside CLIOpts, and to
// set a largely unused field on the Operation request. Again, there is no
// clear path to pass this value down, so we continue to mutate the Meta
// object state for now.
c.Meta.parallelism = args.Operation.Parallelism
diags = diags.Append(c.providerDevOverrideRuntimeWarnings())
// Prepare the backend with the backend-specific arguments
be, beDiags := c.PrepareBackend(args.State)
diags = diags.Append(beDiags)
if diags.HasErrors() {
view.Diagnostics(diags)
return 1
}
// Build the operation request
opReq, opDiags := c.OperationRequest(be, view, args.Operation, args.Destroy, args.OutPath)
diags = diags.Append(opDiags)
if diags.HasErrors() {
view.Diagnostics(diags)
return 1
}
// Collect variable value and add them to the operation request
diags = diags.Append(c.GatherVariables(opReq, args.Vars))
if diags.HasErrors() {
view.Diagnostics(diags)
return 1
}
// Before we delegate to the backend, we'll print any warning diagnostics
// we've accumulated here, since the backend will start fresh with its own
// diagnostics.
view.Diagnostics(diags)
diags = nil
// Perform the operation
op, err := c.RunOperation(be, opReq)
if err != nil {
diags = diags.Append(err)
view.Diagnostics(diags)
return 1
}
if op.Result != backend.OperationSuccess {
return op.Result.ExitStatus()
}
if args.DetailedExitCode && !op.PlanEmpty {
return 2
}
return op.Result.ExitStatus()
}
func (c *PlanCommand) PrepareBackend(args *arguments.State) (backend.Enhanced, tfdiags.Diagnostics) {
// FIXME: we need to apply the state arguments to the meta object here
// because they are later used when initializing the backend. Carving a
// path to pass these arguments to the functions that need them is
// difficult but would make their use easier to understand.
c.Meta.applyStateArguments(args)
backendConfig, diags := c.loadBackendConfig(".")
if diags.HasErrors() {
return nil, diags
}
// Load the backend
be, beDiags := c.Backend(&BackendOpts{
Config: backendConfig,
})
diags = diags.Append(beDiags)
if beDiags.HasErrors() {
return nil, diags
}
return be, diags
}
func (c *PlanCommand) OperationRequest(
be backend.Enhanced,
view views.Plan,
args *arguments.Operation,
destroy bool,
planOutPath string,
) (*backend.Operation, tfdiags.Diagnostics) {
var diags tfdiags.Diagnostics
// Build the operation
opReq := c.Operation(be)
opReq.ConfigDir = "."
opReq.Destroy = destroy
opReq.Hooks = view.Hooks()
opReq.PlanRefresh = args.Refresh
opReq.PlanOutPath = planOutPath
opReq.Targets = args.Targets
opReq.Type = backend.OperationTypePlan
opReq.View = view.Operation()
var err error
opReq.ConfigLoader, err = c.initConfigLoader()
if err != nil {
diags = diags.Append(fmt.Errorf("Failed to initialize config loader: %s", err))
return nil, diags
}
return opReq, diags
}
func (c *PlanCommand) GatherVariables(opReq *backend.Operation, args *arguments.Vars) tfdiags.Diagnostics {
var diags tfdiags.Diagnostics
// FIXME the arguments package currently trivially gathers variable related
// arguments in a heterogenous slice, in order to minimize the number of
// code paths gathering variables during the transition to this structure.
// Once all commands that gather variables have been converted to this
// structure, we could move the variable gathering code to the arguments
// package directly, removing this shim layer.
varArgs := args.All()
items := make([]rawFlag, len(varArgs))
for i := range varArgs {
items[i].Name = varArgs[i].Name
items[i].Value = varArgs[i].Value
}
c.Meta.variableArgs = rawFlags{items: &items}
opReq.Variables, diags = c.collectVariableValues()
return diags
}
func (c *PlanCommand) Help() string {
helpText := `
Usage: terraform [global options] plan [options]
Generates a speculative execution plan, showing what actions Terraform
would take to apply the current configuration. This command will not
actually perform the planned actions.
You can optionally save the plan to a file, which you can then pass to
the "apply" command to perform exactly the actions described in the plan.
Options:
-compact-warnings If Terraform produces any warnings that are not
accompanied by errors, show them in a more compact form
that includes only the summary messages.
-destroy If set, a plan will be generated to destroy all resources
managed by the given configuration and state.
-detailed-exitcode Return detailed exit codes when the command exits. This
will change the meaning of exit codes to:
0 - Succeeded, diff is empty (no changes)
1 - Errored
2 - Succeeded, there is a diff
-input=true Ask for input for variables if not directly set.
-lock=true Lock the state file when locking is supported.
-lock-timeout=0s Duration to retry a state lock.
-no-color If specified, output won't contain any color.
-out=path Write a plan file to the given path. This can be used as
input to the "apply" command.
-parallelism=n Limit the number of concurrent operations. Defaults to 10.
-refresh=true Update state prior to checking for differences.
-state=statefile Path to a Terraform state file to use to look
up Terraform-managed resources. By default it will
use the state "terraform.tfstate" if it exists.
-target=resource Resource to target. Operation will be limited to this
resource and its dependencies. This flag can be used
multiple times.
-var 'foo=bar' Set a variable in the Terraform configuration. This
flag can be set multiple times.
-var-file=foo Set variables in the Terraform configuration from
a file. If "terraform.tfvars" or any ".auto.tfvars"
files are present, they will be automatically loaded.
`
return strings.TrimSpace(helpText)
}
func (c *PlanCommand) Synopsis() string {
return "Show changes required by the current configuration"
}