Update panel examples to panel 0.13.1 (#458)

* Update panel examples to panel 0.13.1

* More indent
This commit is contained in:
Philipp Rudiger
2022-05-25 01:01:45 +02:00
committed by GitHub
parent f712b1369a
commit 2c5ef95027
4 changed files with 267 additions and 285 deletions

View File

@@ -6,30 +6,27 @@
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-2.4.2.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.2.min.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.2.min.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/@holoviz/panel@0.13.0-rc.10/dist/panel.min.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/@holoviz/panel@0.13.1/dist/panel.min.js"></script>
<link rel="stylesheet" href="https://pyscript.net/alpha/pyscript.css" />
<script defer src="https://pyscript.net/alpha/pyscript.js"></script>
</head>
<py-env>
- bokeh
- numpy
- panel==0.13.1
</py-env>
<body>
<py-env>
- bokeh
- numpy
- panel==0.13.1a2
</py-env>
<h1>Panel Example</h1>
<div id="myplot"></div>
<div id="simple_app"></div>
<py-script>
import asyncio
import panel as pn
import panel as pn
slider = pn.widgets.FloatSlider(start=0, end=10, name='Amplitude')
slider = pn.widgets.FloatSlider(start=0, end=10, name='Amplitude')
def callback(new):
return f'Amplitude is: {new}'
def callback(new):
return f'Amplitude is: {new}'
row = pn.Row(slider, pn.bind(callback, slider))
await pn.io.pyodide.show(row, 'myplot')
pn.Row(slider, pn.bind(callback, slider)).servable(target='simple_app');
</py-script>
</body>
</html>

View File

@@ -12,8 +12,8 @@
<link rel="icon" type="image/x-icon" href="./favicon.png">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.3/css/all.min.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0/dist/css/widgets.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0/dist/css/markdown.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.1/dist/css/widgets.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.1/dist/css/markdown.css" type="text/css" />
<script type="text/javascript" src="https://unpkg.com/h3-js@3.7.2/dist/h3-js.umd.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/deck.gl@8.6.7/dist.min.js"></script>
@@ -25,30 +25,32 @@
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-2.4.2.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.2.min.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.2.min.js"></script>
<script type="text/javascript" src="https://unpkg.com/@holoviz/panel@0.13.0/dist/panel.js"></script>
<script type="text/javascript" src="https://unpkg.com/@holoviz/panel@0.13.1/dist/panel.js"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0/dist/bundled/bootstraptemplate/bootstrap.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0/dist/bundled/defaulttheme/default.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.1/dist/bundled/bootstraptemplate/bootstrap.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.1/dist/bundled/defaulttheme/default.css">
<script src="https://cdn.jsdelivr.net/npm/jquery@3.5.1/dist/jquery.slim.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/js/bootstrap.bundle.min.js"></script>
<style>
#sidebar {
width: 400px;
width: 400px;
padding: 0;
}
</style>
<link rel="stylesheet" href="https://pyscript.net/alpha/pyscript.css" />
<script defer src="https://pyscript.net/alpha/pyscript.js"></script>
</head>
<body>
<py-env>
- bokeh
- numpy
- pandas
- panel==0.13.1a2
</py-env>
<py-env>
- bokeh
- numpy
- pandas
- panel==0.13.1
</py-env>
<body>
<div class="container-fluid d-flex flex-column vh-100 overflow-hidden" id="container">
<nav class="navbar navbar-expand-md navbar-dark sticky-top shadow" id="header" style="background-color: #000000;">
<button type="button" class="navbar-toggle collapsed" id="sidebarCollapse">
@@ -59,167 +61,162 @@
<img src="./logo.png" class="app-logo">
</a>
<a class="title" href="" style="color: #f0ab3c;">Panel DeckGL NYC Taxi Demo</a>
</div>
</div>
</nav>
<div class="row overflow-hidden" id="content">
<div class="d-flex flex-nowrap" id="content">
<div class="sidenav" id="sidebar">
<ul class="nav flex-column">
<div class="bk-root" id="widgets"></div>
<py-repl id="my-repl" auto-generate="true"> </py-repl>
<ul class="nav flex-column" >
<div class="bk-root" id="widgets"></div>
<py-repl id="my-repl" auto-generate="true"> </py-repl>
</ul>
</div>
<div class="col mh-100 float-left" style="padding: 0;">
<div class="col mh-100" style="padding: 0">
<div class="bk-root" id="plot"></div>
</div>
</div>
</div>
<py-script>
import asyncio
import panel as pn
import pandas as pd
import param
import panel as pn
import param
import pandas as pd
from pyodide.http import open_url
from panel.io.pyodide import show
from pyodide.http import open_url
MAPBOX_KEY = "pk.eyJ1IjoicGFuZWxvcmciLCJhIjoiY2s1enA3ejhyMWhmZjNobjM1NXhtbWRrMyJ9.B_frQsAVepGIe-HiOJeqvQ"
MAPBOX_KEY = "pk.eyJ1IjoicGFuZWxvcmciLCJhIjoiY2s1enA3ejhyMWhmZjNobjM1NXhtbWRrMyJ9.B_frQsAVepGIe-HiOJeqvQ"
class App(param.Parameterized):
class App(pn.viewable.Viewer):
data = param.DataFrame(precedence=-1)
data = param.DataFrame(precedence=-1)
view = param.DataFrame(precedence=-1)
view = param.DataFrame(precedence=-1)
arc_view = param.DataFrame(precedence=-1)
arc_view = param.DataFrame(precedence=-1)
radius = param.Integer(default=50, bounds=(20, 1000))
radius = param.Integer(default=50, bounds=(20, 1000))
elevation = param.Integer(default=10, bounds=(0, 50))
elevation = param.Integer(default=10, bounds=(0, 50))
hour = param.Integer(default=0, bounds=(0, 23))
hour = param.Integer(default=0, bounds=(0, 23))
speed = param.Integer(default=1, bounds=(0, 10), precedence=-1)
speed = param.Integer(default=1, bounds=(0, 10), precedence=-1)
play = param.Event(label='▷')
play = param.Event(label='▷')
def __init__(self, **params):
self.deck_gl = None
super().__init__(**params)
self.deck_gl = pn.pane.DeckGL(
dict(self.spec),
mapbox_api_key=MAPBOX_KEY,
throttle={'click': 10},
sizing_mode='stretch_both',
margin=0
)
self.deck_gl.param.watch(self._update_arc_view, 'click_state')
self._playing = False
self._cb = pn.state.add_periodic_callback(
self._update_hour, 1000//self.speed, start=False
)
def __init__(self, **params):
self.deck_gl = None
super().__init__(**params)
self.deck_gl = pn.pane.DeckGL(
dict(self.spec),
mapbox_api_key=MAPBOX_KEY,
throttle={'click': 10},
sizing_mode='stretch_both',
margin=0
)
self.deck_gl.param.watch(self._update_arc_view, 'click_state')
self._playing = False
self._cb = pn.state.add_periodic_callback(
self._update_hour, 1000//self.speed, start=False
)
@property
def spec(self):
return {
"initialViewState": {
"bearing": 0,
"latitude": 40.7,
"longitude": -73.9,
"maxZoom": 15,
"minZoom": 5,
"pitch": 40.5,
"zoom": 11
},
"layers": [self.hex_layer, self.arc_layer],
"mapStyle": "mapbox://styles/mapbox/dark-v9",
"views": [
{"@@type": "MapView", "controller": True}
]
}
def __panel__(self):
return self.deck_gl
@property
def hex_layer(self):
return {
"@@type": "HexagonLayer",
"autoHighlight": True,
"coverage": 1,
"data": self.data if self.view is None else self.view,
"elevationRange": [0, 100],
"elevationScale": self.elevation,
"radius": self.radius,
"extruded": True,
"getPosition": "@@=[pickup_x, pickup_y]",
"id": "8a553b25-ef3a-489c-bbe2-e102d18a3211"
}
@property
def spec(self):
return {
"initialViewState": {
"bearing": 0,
"latitude": 40.7,
"longitude": -73.9,
"maxZoom": 15,
"minZoom": 5,
"pitch": 40.5,
"zoom": 11
},
"layers": [self.hex_layer, self.arc_layer],
"mapStyle": "mapbox://styles/mapbox/dark-v9",
"views": [
{"@@type": "MapView", "controller": True}
]
}
@property
def arc_layer(self):
return {
"@@type": "ArcLayer",
"id": 'arc-layer',
"data": self.arc_view,
"pickable": True,
"getWidth": 1,
"getSourcePosition": "@@=[pickup_x, pickup_y]",
"getTargetPosition": "@@=[dropoff_x, dropoff_y]",
"getSourceColor": [0, 255, 0, 180],
"getTargetColor": [240, 100, 0, 180]
}
@property
def hex_layer(self):
return {
"@@type": "HexagonLayer",
"autoHighlight": True,
"coverage": 1,
"data": self.data if self.view is None else self.view,
"elevationRange": [0, 100],
"elevationScale": self.elevation,
"radius": self.radius,
"extruded": True,
"getPosition": "@@=[pickup_x, pickup_y]",
"id": "8a553b25-ef3a-489c-bbe2-e102d18a3211"
}
def _update_hour(self):
self.hour = (self.hour+1) % 24
@property
def arc_layer(self):
return {
"@@type": "ArcLayer",
"id": 'arc-layer',
"data": self.arc_view,
"pickable": True,
"getWidth": 1,
"getSourcePosition": "@@=[pickup_x, pickup_y]",
"getTargetPosition": "@@=[dropoff_x, dropoff_y]",
"getSourceColor": [0, 255, 0, 180],
"getTargetColor": [240, 100, 0, 180]
}
@param.depends('view', watch=True)
def _update_arc_view(self, event=None):
data = self.data if self.view is None else self.view
if not self.deck_gl or not self.deck_gl.click_state:
self.arc_view = data.iloc[:0]
return
lon, lat = self.deck_gl.click_state['coordinate']
tol = 0.001
self.arc_view = data[
(df.pickup_x>=float(lon-tol)) &
(df.pickup_x<=float(lon+tol)) &
(df.pickup_y>=float(lat-tol)) &
(df.pickup_y<=float(lat+tol))
]
def _update_hour(self):
self.hour = (self.hour+1) % 24
@param.depends('hour', watch=True, on_init=True)
def _update_hourly_view(self):
self.view = self.data[self.data.hour==self.hour]
@param.depends('view', watch=True)
def _update_arc_view(self, event=None):
data = self.data if self.view is None else self.view
if not self.deck_gl or not self.deck_gl.click_state:
self.arc_view = data.iloc[:0]
else:
lon, lat = self.deck_gl.click_state['coordinate']
tol = 0.001
self.arc_view = data[
(df.pickup_x>=float(lon-tol)) &
(df.pickup_x<=float(lon+tol)) &
(df.pickup_y>=float(lat-tol)) &
(df.pickup_y<=float(lat+tol))
]
@param.depends('speed', watch=True)
def _update_speed(self):
self._cb.period = 1000//self.speed
@param.depends('hour', watch=True, on_init=True)
def _update_hourly_view(self):
self.view = self.data[self.data.hour==self.hour]
@param.depends('play', watch=True)
def _play_pause(self):
if self._playing:
self._cb.stop()
self.param.play.label = '▷'
self.param.speed.precedence = -1
else:
self._cb.start()
self.param.play.label = '❚❚'
self.param.speed.precedence = 1
self._playing = not self._playing
@param.depends('speed', watch=True)
def _update_speed(self):
self._cb.period = 1000//self.speed
@param.depends('view', 'radius', 'elevation', 'arc_view', watch=True)
def update_spec(self):
self.deck_gl.object = dict(self.spec)
@param.depends('play', watch=True)
def _play_pause(self):
if self._playing:
self._cb.stop()
self.param.play.label = '▷'
self.param.speed.precedence = -1
else:
self._cb.start()
self.param.play.label = '❚❚'
self.param.speed.precedence = 1
self._playing = not self._playing
url = 'https://s3.eu-west-1.amazonaws.com/assets.holoviews.org/data/nyc_taxi_wide.csv'
df = pd.read_csv(open_url(url))
app = App(data=df)
controls = pn.Param(app.param, sizing_mode='stretch_width', show_name=False)
@param.depends('view', 'radius', 'elevation', 'arc_view', watch=True)
def update_spec(self):
self.deck_gl.object = dict(self.spec)
url = 'https://s3.eu-west-1.amazonaws.com/assets.holoviews.org/data/nyc_taxi_wide.csv'
df = pd.read_csv(open_url(url))
app = App(data=df)
controls = pn.Param(app.param, sizing_mode='stretch_width', show_name=False)
await show(controls, 'widgets')
await show(app, 'plot')
app.deck_gl.servable(target='plot')
controls.servable(target='widgets');
</py-script>
</body>
</html>

View File

@@ -12,8 +12,8 @@
<link rel="icon" type="image/x-icon" href="./favicon.png">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.3/css/all.min.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0/dist/css/widgets.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0/dist/css/markdown.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.1/dist/css/widgets.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.1/dist/css/markdown.css" type="text/css" />
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/vega@5"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/vega-lite@5"></script>
@@ -22,14 +22,14 @@
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-2.4.2.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.2.min.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.2.min.js"></script>
<script type="text/javascript" src="https://unpkg.com/@holoviz/panel@0.13.0/dist/panel.min.js"></script>
<script type="text/javascript" src="https://unpkg.com/@holoviz/panel@0.13.1/dist/panel.min.js"></script>
<script type="text/javascript">
Bokeh.set_log_level("info");
</script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0/dist/bundled/bootstraptemplate/bootstrap.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0/dist/bundled/defaulttheme/default.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.1/dist/bundled/bootstraptemplate/bootstrap.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.1/dist/bundled/defaulttheme/default.css">
<style>
#sidebar {
@@ -49,7 +49,7 @@
- numpy
- pandas
- scikit-learn
- panel==0.13.1a2
- panel==0.13.1
</py-env>
<body>
@@ -81,99 +81,92 @@
</div>
</div>
</div>
<py-script>
import asyncio
import altair as alt
import panel as pn
import pandas as pd
import altair as alt
import panel as pn
import pandas as pd
from sklearn.cluster import KMeans
from pyodide.http import open_url
from panel.io.pyodide import show
from sklearn.cluster import KMeans
from pyodide.http import open_url
pn.config.sizing_mode = 'stretch_width'
pn.config.sizing_mode = 'stretch_width'
url = 'https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv'
penguins = pd.read_csv(open_url(url)).dropna()
cols = list(penguins.columns)[2:6]
url = 'https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv'
penguins = pd.read_csv(open_url(url)).dropna()
cols = list(penguins.columns)[2:6]
x = pn.widgets.Select(name='x', options=cols, value='bill_depth_mm').servable(target='x-widget')
y = pn.widgets.Select(name='y', options=cols, value='bill_length_mm').servable(target='y-widget')
n_clusters = pn.widgets.IntSlider(name='n_clusters', start=1, end=5, value=3).servable(target='n-widget')
x = pn.widgets.Select(name='x', options=cols, value='bill_depth_mm')
y = pn.widgets.Select(name='y', options=cols, value='bill_length_mm')
n_clusters = pn.widgets.IntSlider(name='n_clusters', start=1, end=5, value=3)
brush = alt.selection_interval(name='brush') # selection of type "interval"
brush = alt.selection_interval(name='brush') # selection of type "interval"
def get_clusters(n_clusters):
kmeans = KMeans(n_clusters=n_clusters)
est = kmeans.fit(penguins[cols].values)
df = penguins.copy()
df['labels'] = est.labels_.astype('str')
return df
def get_clusters(n_clusters):
kmeans = KMeans(n_clusters=n_clusters)
est = kmeans.fit(penguins[cols].values)
df = penguins.copy()
df['labels'] = est.labels_.astype('str')
return df
def get_chart(x, y, df):
centers = df.groupby('labels').mean()
return (
alt.Chart(df)
.mark_point(size=100)
.encode(
x=alt.X(x, scale=alt.Scale(zero=False)),
y=alt.Y(y, scale=alt.Scale(zero=False)),
shape='labels',
color='species'
).add_selection(brush).properties(width=800) +
alt.Chart(centers)
.mark_point(size=250, shape='cross', color='black')
.encode(x=x+':Q', y=y+':Q')
)
def get_chart(x, y, df):
centers = df.groupby('labels').mean()
return (alt.Chart(df)
.mark_point(size=100)
.encode(
x=alt.X(x, scale=alt.Scale(zero=False)),
y=alt.Y(y, scale=alt.Scale(zero=False)),
shape='labels',
color='species'
).add_selection(brush).properties(width=800) +
alt.Chart(centers)
.mark_point(size=250, shape='cross', color='black')
.encode(x=x+':Q', y=y+':Q')
)
intro = pn.pane.Markdown("""
This app provides an example of **building a simple dashboard using
Panel**.\n\nIt demonstrates how to take the output of **k-means
clustering on the Penguins dataset** using scikit-learn,
parameterizing the number of clusters and the variables to
plot.\n\nThe plot and the table are linked, i.e. selecting on the plot
will filter the data in the table.\n\n The **`x` marks the center** of
the cluster.
""").servable(target='intro')
chart = pn.pane.Vega()
table = pn.widgets.Tabulator(pagination='remote', page_size=10)
chart = pn.pane.Vega().servable(target='cluster-plot')
table = pn.widgets.Tabulator(pagination='remote', page_size=10).servable(target='table')
def update_table(event=None):
table.value = get_clusters(n_clusters.value)
def update_table(event=None):
table.value = get_clusters(n_clusters.value)
n_clusters.param.watch(update_table, 'value')
n_clusters.param.watch(update_table, 'value')
@pn.depends(x, y, n_clusters, watch=True)
def update_chart(*events):
chart.object = get_chart(x.value, y.value, table.value)
chart.selection.param.watch(update_filters, 'brush')
@pn.depends(x, y, n_clusters, watch=True)
def update_chart(*events):
chart.object = get_chart(x.value, y.value, table.value)
chart.selection.param.watch(update_filters, 'brush')
def update_filters(event=None):
filters = []
for k, v in (getattr(event, 'new') or {}).items():
filters.append(dict(field=k, type='>=', value=v[0]))
filters.append(dict(field=k, type='<=', value=v[1]))
table.filters = filters
def update_filters(event=None):
filters = []
for k, v in (getattr(event, 'new') or {}).items():
filters.append(dict(field=k, type='>=', value=v[0]))
filters.append(dict(field=k, type='<=', value=v[1]))
table.filters = filters
update_table()
update_chart()
intro = """
This app provides an example of **building a simple dashboard using
Panel**.\n\nIt demonstrates how to take the output of **k-means
clustering on the Penguins dataset** using scikit-learn,
parameterizing the number of clusters and the variables to
plot.\n\nThe plot and the table are linked, i.e. selecting on the plot
will filter the data in the table.\n\n The **`x` marks the center** of
the cluster.
"""
await show(x, 'x-widget')
await show(y, 'y-widget')
await show(n_clusters, 'n-widget')
await show(intro, 'intro')
await show(chart, 'cluster-plot')
await show(table, 'table')
update_table()
update_chart()
</py-script>
<script>
$(document).ready(function () {
$('#sidebarCollapse').on('click', function () {
$('#sidebar').toggleClass('active')
$(this).toggleClass('active')
var interval = setInterval(function () { window.dispatchEvent(new Event('resize')); }, 10);
setTimeout(function () { clearInterval(interval) }, 210)
});
$('#sidebarCollapse').on('click', function () {
$('#sidebar').toggleClass('active')
$(this).toggleClass('active')
var interval = setInterval(function () { window.dispatchEvent(new Event('resize')); }, 10);
setTimeout(function () { clearInterval(interval) }, 210)
});
});
</script>
</body>

View File

@@ -12,21 +12,21 @@
<link rel="icon" type="image/x-icon" href="./favicon.ico">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.3/css/all.min.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0/dist/css/widgets.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0/dist/css/markdown.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.1/dist/css/widgets.css" type="text/css" />
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.1/dist/css/markdown.css" type="text/css" />
<script type="text/javascript" src="https://unpkg.com/tabulator-tables@4.9.3/dist/js/tabulator.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-2.4.2.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.2.min.js"></script>
<script type="text/javascript" src="https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.2.min.js"></script>
<script type="text/javascript" src="https://unpkg.com/@holoviz/panel@0.13.0/dist/panel.min.js"></script>
<script type="text/javascript" src="https://unpkg.com/@holoviz/panel@0.13.1/dist/panel.min.js"></script>
<script type="text/javascript">
Bokeh.set_log_level("info");
</script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0/dist/bundled/bootstraptemplate/bootstrap.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.0/dist/bundled/defaulttheme/default.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.1/dist/bundled/bootstraptemplate/bootstrap.css">
<link rel="stylesheet" href="https://unpkg.com/@holoviz/panel@0.13.1/dist/bundled/defaulttheme/default.css">
<script src="https://cdn.jsdelivr.net/npm/jquery@3.5.1/dist/jquery.slim.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/js/bootstrap.bundle.min.js"></script>
@@ -36,10 +36,10 @@
</head>
<py-env>
- bokeh
- numpy
- pandas
- panel
- bokeh
- numpy
- pandas
- panel==0.13.1
</py-env>
<body>
@@ -66,58 +66,53 @@
</div>
</div>
</div>
<py-script>
import asyncio
import panel as pn
import numpy as np
import pandas as pd
import panel as pn
import numpy as np
import pandas as pd
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure
from panel.io.pyodide import show
df = pd.DataFrame(np.random.randn(10, 4), columns=list('ABCD')).cumsum()
df = pd.DataFrame(np.random.randn(10, 4), columns=list('ABCD')).cumsum()
rollover = pn.widgets.IntInput(name='Rollover', value=15)
follow = pn.widgets.Checkbox(name='Follow', value=True, align='end')
rollover = pn.widgets.IntInput(name='Rollover', value=15)
follow = pn.widgets.Checkbox(name='Follow', value=True, align='end')
tabulator = pn.widgets.Tabulator(df, height=450, width=400).servable(target='table')
tabulator = pn.widgets.Tabulator(df, height=450, width=400)
def color_negative_red(val):
"""
Takes a scalar and returns a string with
the css property `'color: red'` for negative
strings, black otherwise.
"""
color = 'red' if val < 0 else 'green'
return 'color: %s' % color
def color_negative_red(val):
"""
Takes a scalar and returns a string with
the css property `'color: red'` for negative
strings, black otherwise.
"""
color = 'red' if val < 0 else 'green'
return 'color: %s' % color
tabulator.style.applymap(color_negative_red)
tabulator.style.applymap(color_negative_red)
p = figure(height=450, width=600)
p = figure(height=450, width=600)
cds = ColumnDataSource(data=ColumnDataSource.from_df(df))
cds = ColumnDataSource(data=ColumnDataSource.from_df(df))
p.line('index', 'A', source=cds, line_color='red')
p.line('index', 'B', source=cds, line_color='green')
p.line('index', 'C', source=cds, line_color='blue')
p.line('index', 'D', source=cds, line_color='purple')
p.line('index', 'A', source=cds, line_color='red')
p.line('index', 'B', source=cds, line_color='green')
p.line('index', 'C', source=cds, line_color='blue')
p.line('index', 'D', source=cds, line_color='purple')
def stream():
data = df.iloc[-1] + np.random.randn(4)
tabulator.stream(data, rollover=rollover.value, follow=follow.value)
value = {k: [v] for k, v in tabulator.value.iloc[-1].to_dict().items()}
value['index'] = [tabulator.value.index[-1]]
cds.stream(value)
def stream():
data = df.iloc[-1] + np.random.randn(4)
tabulator.stream(data, rollover=rollover.value, follow=follow.value)
value = {k: [v] for k, v in tabulator.value.iloc[-1].to_dict().items()}
value['index'] = [tabulator.value.index[-1]]
cds.stream(value)
cb = pn.state.add_periodic_callback(stream, 200)
cb = pn.state.add_periodic_callback(stream, 200)
controls = pn.Row(cb.param.period, rollover, follow, width=400)
await show(controls, 'controls')
await show(tabulator, 'table')
await show(p, 'plot')
pn.pane.Bokeh(p).servable(target='plot')
pn.Row(cb.param.period, rollover, follow, width=400).servable(target='controls')
</py-script>
</body>
</html>