mirror of
https://github.com/pyscript/pyscript.git
synced 2025-12-19 18:27:29 -05:00
Factor out palettes, mandelbrot() and julia()
This commit is contained in:
62
pyscriptjs/examples/fractals.py
Normal file
62
pyscriptjs/examples/fractals.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import numpy as np
|
||||
|
||||
def mandelbrot(width: int, height: int, *,
|
||||
x: float = -0.5, y: float = 0, zoom: int = 1, max_iterations: int = 100) -> np.array:
|
||||
"""
|
||||
From https://www.learnpythonwithrune.org/numpy-compute-mandelbrot-set-by-vectorization/.
|
||||
"""
|
||||
# To make navigation easier we calculate these values
|
||||
x_width, y_height = 1.5, 1.5*height/width
|
||||
x_from, x_to = x - x_width/zoom, x + x_width/zoom
|
||||
y_from, y_to = y - y_height/zoom, y + y_height/zoom
|
||||
|
||||
# Here the actual algorithm starts
|
||||
x = np.linspace(x_from, x_to, width).reshape((1, width))
|
||||
y = np.linspace(y_from, y_to, height).reshape((height, 1))
|
||||
c = x + 1j*y
|
||||
|
||||
# Initialize z to all zero
|
||||
z = np.zeros(c.shape, dtype=np.complex128)
|
||||
|
||||
# To keep track in which iteration the point diverged
|
||||
div_time = np.zeros(z.shape, dtype=int)
|
||||
|
||||
# To keep track on which points did not converge so far
|
||||
m = np.full(c.shape, True, dtype=bool)
|
||||
for i in range(max_iterations):
|
||||
z[m] = z[m]**2 + c[m]
|
||||
diverged = np.greater(np.abs(z), 2, out=np.full(c.shape, False), where=m) # Find diverging
|
||||
div_time[diverged] = i # set the value of the diverged iteration number
|
||||
m[np.abs(z) > 2] = False # to remember which have diverged
|
||||
|
||||
return div_time
|
||||
|
||||
def julia(width: int, height: int, *,
|
||||
c: complex = -0.4 + 0.6j, x: float = 0, y: float = 0, zoom: int = 1, max_iterations: int = 100) -> np.array:
|
||||
"""
|
||||
From https://www.learnpythonwithrune.org/numpy-calculate-the-julia-set-with-vectorization/.
|
||||
"""
|
||||
# To make navigation easier we calculate these values
|
||||
x_width, y_height = 1.5, 1.5*height/width
|
||||
x_from, x_to = x - x_width/zoom, x + x_width/zoom
|
||||
y_from, y_to = y - y_height/zoom, y + y_height/zoom
|
||||
|
||||
# Here the actual algorithm starts
|
||||
x = np.linspace(x_from, x_to, width).reshape((1, width))
|
||||
y = np.linspace(y_from, y_to, height).reshape((height, 1))
|
||||
z = x + 1j*y
|
||||
|
||||
# Initialize z to all zero
|
||||
c = np.full(z.shape, c)
|
||||
|
||||
# To keep track in which iteration the point diverged
|
||||
div_time = np.zeros(z.shape, dtype=int)
|
||||
|
||||
# To keep track on which points did not converge so far
|
||||
m = np.full(c.shape, True, dtype=bool)
|
||||
for i in range(max_iterations):
|
||||
z[m] = z[m]**2 + c[m]
|
||||
m[np.abs(z) > 2] = False
|
||||
div_time[m] = i
|
||||
|
||||
return div_time
|
||||
Reference in New Issue
Block a user