mirror of
https://github.com/pyscript/pyscript.git
synced 2025-12-22 19:53:00 -05:00
Move tests, create makefile action to run tests on examples (#433)
* Move tests, create makefile action to run tests on examples * Correct import file for html files * Build environment for tests * Fix the CI * rearrange CI * fix find cmd and make sure we don't delete the folder implicitly * more rearranging * fix folder permissions and custom sed for subfolders * add toga wheels files * re-add missing file * mirror latest changes in alpha ci * fix find cmd * try different fix for find * remove redundant build Co-authored-by: mariana <marianameireles@protonmail.com> Co-authored-by: pww217 <pwilson@anaconda.com> Co-authored-by: Fabio Pliger <fabio.pliger@gmail.com>
This commit is contained in:
160
examples/micrograd_ai.py
Normal file
160
examples/micrograd_ai.py
Normal file
@@ -0,0 +1,160 @@
|
||||
# Credit: https://github.com/karpathy/micrograd/blob/master/demo.ipynb
|
||||
# cell
|
||||
import datetime
|
||||
import random
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
# cell
|
||||
from micrograd.engine import Value
|
||||
from micrograd.nn import MLP
|
||||
|
||||
print_statements = []
|
||||
|
||||
|
||||
def run_all_micrograd_demo(*args, **kwargs):
|
||||
result = micrograd_demo()
|
||||
pyscript.write("micrograd-run-all-fig2-div", result)
|
||||
|
||||
|
||||
def print_div(o):
|
||||
o = str(o)
|
||||
print_statements.append(o + " \n<br>")
|
||||
pyscript.write("micrograd-run-all-print-div", "".join(print_statements))
|
||||
|
||||
|
||||
# All code is wrapped in this run_all function so it optionally executed (called)
|
||||
# from pyscript when a button is pressed.
|
||||
def micrograd_demo(*args, **kwargs):
|
||||
"""
|
||||
Runs the micrograd demo.
|
||||
|
||||
*args and **kwargs do nothing and are only there to capture any parameters passed
|
||||
from pyscript when this function is called when a button is clicked.
|
||||
"""
|
||||
|
||||
# cell
|
||||
start = datetime.datetime.now()
|
||||
print_div("Starting...")
|
||||
|
||||
# cell
|
||||
np.random.seed(1337)
|
||||
random.seed(1337)
|
||||
|
||||
# cell
|
||||
# An adaptation of sklearn's make_moons function
|
||||
# https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
|
||||
def make_moons(n_samples=100, noise=None):
|
||||
n_samples_out, n_samples_in = n_samples, n_samples
|
||||
|
||||
outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out))
|
||||
outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out))
|
||||
inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in))
|
||||
inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - 0.5
|
||||
|
||||
X = np.vstack(
|
||||
[
|
||||
np.append(outer_circ_x, inner_circ_x),
|
||||
np.append(outer_circ_y, inner_circ_y),
|
||||
]
|
||||
).T
|
||||
y = np.hstack(
|
||||
[
|
||||
np.zeros(n_samples_out, dtype=np.intp),
|
||||
np.ones(n_samples_in, dtype=np.intp),
|
||||
]
|
||||
)
|
||||
if noise is not None:
|
||||
X += np.random.normal(loc=0.0, scale=noise, size=X.shape)
|
||||
return X, y
|
||||
|
||||
X, y = make_moons(n_samples=100, noise=0.1)
|
||||
|
||||
# cell
|
||||
y = y * 2 - 1 # make y be -1 or 1
|
||||
# visualize in 2D
|
||||
plt.figure(figsize=(5, 5))
|
||||
plt.scatter(X[:, 0], X[:, 1], c=y, s=20, cmap="jet")
|
||||
plt
|
||||
pyscript.write("micrograd-run-all-fig1-div", plt)
|
||||
|
||||
# cell
|
||||
model = MLP(2, [16, 16, 1]) # 2-layer neural network
|
||||
print_div(model)
|
||||
print_div(("number of parameters", len(model.parameters())))
|
||||
|
||||
# cell
|
||||
# loss function
|
||||
def loss(batch_size=None):
|
||||
# inline DataLoader :)
|
||||
if batch_size is None:
|
||||
Xb, yb = X, y
|
||||
else:
|
||||
ri = np.random.permutation(X.shape[0])[:batch_size]
|
||||
Xb, yb = X[ri], y[ri]
|
||||
inputs = [list(map(Value, xrow)) for xrow in Xb]
|
||||
|
||||
# forward the model to get scores
|
||||
scores = list(map(model, inputs))
|
||||
|
||||
# svm "max-margin" loss
|
||||
losses = [(1 + -yi * scorei).relu() for yi, scorei in zip(yb, scores)]
|
||||
data_loss = sum(losses) * (1.0 / len(losses))
|
||||
# L2 regularization
|
||||
alpha = 1e-4
|
||||
reg_loss = alpha * sum(p * p for p in model.parameters())
|
||||
total_loss = data_loss + reg_loss
|
||||
|
||||
# also get accuracy
|
||||
accuracy = [
|
||||
((yi).__gt__(0)) == ((scorei.data).__gt__(0))
|
||||
for yi, scorei in zip(yb, scores)
|
||||
]
|
||||
return total_loss, sum(accuracy) / len(accuracy)
|
||||
|
||||
total_loss, acc = loss()
|
||||
print((total_loss, acc))
|
||||
|
||||
# cell
|
||||
# optimization
|
||||
for k in range(20): # was 100
|
||||
|
||||
# forward
|
||||
total_loss, _ = loss()
|
||||
|
||||
# backward
|
||||
model.zero_grad()
|
||||
total_loss.backward()
|
||||
|
||||
# update (sgd)
|
||||
learning_rate = 1.0 - 0.9 * k / 100
|
||||
for p in model.parameters():
|
||||
p.data -= learning_rate * p.grad
|
||||
|
||||
if k % 1 == 0:
|
||||
# print(f"step {k} loss {total_loss.data}, accuracy {acc*100}%")
|
||||
print_div(f"step {k} loss {total_loss.data}, accuracy {acc*100}%")
|
||||
|
||||
# cell
|
||||
h = 0.25
|
||||
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
|
||||
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
|
||||
Xmesh = np.c_[xx.ravel(), yy.ravel()]
|
||||
inputs = [list(map(Value, xrow)) for xrow in Xmesh]
|
||||
scores = list(map(model, inputs))
|
||||
Z = np.array([(s.data).__gt__(0) for s in scores])
|
||||
Z = Z.reshape(xx.shape)
|
||||
|
||||
_ = plt.figure()
|
||||
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
|
||||
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
|
||||
plt.xlim(xx.min(), xx.max())
|
||||
plt.ylim(yy.min(), yy.max())
|
||||
|
||||
finish = datetime.datetime.now()
|
||||
print_div(f"It took {(finish-start).seconds} seconds to run this code.")
|
||||
|
||||
plt
|
||||
return plt
|
||||
Reference in New Issue
Block a user