pre-commit: Add codespell and other checks (#263)

This commit is contained in:
Christian Clauss
2022-05-06 23:23:14 +02:00
committed by GitHub
parent 990b0b2797
commit fadb4a67e7
9 changed files with 69 additions and 28 deletions

View File

@@ -8,7 +8,7 @@ import numpy as np
# cell
from micrograd.engine import Value
from micrograd.nn import MLP, Layer, Neuron
from micrograd.nn import MLP
print_statements = []
@@ -43,7 +43,8 @@ def micrograd_demo(*args, **kwargs):
random.seed(1337)
# cell
# An adaptation of sklearn's make_moons function https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
# An adaptation of sklearn's make_moons function
# https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
def make_moons(n_samples=100, noise=None):
n_samples_out, n_samples_in = n_samples, n_samples
@@ -102,7 +103,7 @@ def micrograd_demo(*args, **kwargs):
data_loss = sum(losses) * (1.0 / len(losses))
# L2 regularization
alpha = 1e-4
reg_loss = alpha * sum((p * p for p in model.parameters()))
reg_loss = alpha * sum(p * p for p in model.parameters())
total_loss = data_loss + reg_loss
# also get accuracy
@@ -120,7 +121,7 @@ def micrograd_demo(*args, **kwargs):
for k in range(20): # was 100
# forward
total_loss, acc = loss()
total_loss, _ = loss()
# backward
model.zero_grad()
@@ -146,7 +147,7 @@ def micrograd_demo(*args, **kwargs):
Z = np.array([(s.data).__gt__(0) for s in scores])
Z = Z.reshape(xx.shape)
fig = plt.figure()
_ = plt.figure()
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.xlim(xx.min(), xx.max())