Files
pyscript/examples/micrograd_ai.html
Jeff Glass 0b014eea56 Execute pys-on* events when triggered, not at load (#686)
* Execute pys-on* events when triggered, not at load

Mimicing the behavior of Javascripts 'onLoad' event, we should
not be executing the use code at page-load time, only when
the event is triggered.

* Update examples to new syntax

* Fix merge issue

* Await running event handler code

* Restore pys-on* events with original behavior, deprecation warning

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* xfail toga example

* Add missing { (typo)

* Adjust callback chandling to make linter happy

* Change alpha to latest (#760)

* Don't create custom elements in main and fix various small issues on tests (#747)

* Create custom elements when the runtime finishes loading

* Remove xfails and fix repl integration test

* Fix commented ignore

* Address Antonio's comments

* Fix bad rebase

* Make ure to wait for repl to be in attached state before asserting content

* Move createCustomeElement up so it runs before we close the loader, xfail flaky d3 test

* Fix xfail

* [pre-commit.ci] pre-commit autoupdate (#762)

updates:
- [github.com/pre-commit/mirrors-eslint: v8.23.0 → v8.23.1](https://github.com/pre-commit/mirrors-eslint/compare/v8.23.0...v8.23.1)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* change documentation to point to latest instead of frozen alpha (#764)

* Toga example is xpass

* Correct 'xpass' to 'xfail' mark

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Peter W <34256109+pww217@users.noreply.github.com>
Co-authored-by: Fábio Rosado <fabiorosado@outlook.com>
2022-09-14 20:33:42 -05:00

193 lines
7.6 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<link rel="icon" type="image/x-icon" href="./favicon.png">
<title>micrograd</title>
<link rel="stylesheet" href="https://pyscript.net/latest/pyscript.css" />
<script defer src="https://pyscript.net/latest/pyscript.js"></script>
<py-env>
- micrograd
- numpy
- matplotlib
</py-env>
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css" rel="stylesheet" crossorigin="anonymous">
</head>
<body style="padding-top: 20px; padding-right: 20px; padding-bottom: 20px; padding-left: 20px">
<h1>Micrograd - A tiny Autograd engine (with a bite! :))</h1><br>
<div>
<p>
<a href="https://github.com/karpathy/micrograd">Micrograd</a> is a tiny Autograd engine created
by <a href="https://twitter.com/karpathy">Andrej Karpathy</a>. This app recreates the
<a href="https://github.com/karpathy/micrograd/blob/master/demo.ipynb">demo</a>
he prepared for this package using pyscript to train a basic model, written in Python, natively in
the browser. <br>
</p>
</div>
<div>
<p>
You may run each Python REPL cell interactively by pressing (Shift + Enter) or (Ctrl + Enter).
You can also modify the code directly as you wish. If you want to run all the code at once,
not each cell individually, you may instead click the 'Run All' button. Training the model
takes between 1-2 min if you decide to 'Run All' at once. 'Run All' is your only option if
you are running this on a mobile device where you cannot press (Shift + Enter). After the
model is trained, a plot image should be displayed depicting the model's ability to
classify the data. <br>
</p>
<p>
Currently the <code>&gt;</code> symbol is being imported incorrectly as <code>&ampgt;</code> into the REPL's.
In this app the <code>&gt;</code> symbol has been replaced with <code>().__gt__()</code> so you can run the code
without issue. Ex: instead of <code>a &gt; b</code>, you will see <code>(a).__gt__(b)</code> instead. <br>
</p>
<p>
<py-script>import js; js.document.getElementById('python-status').innerHTML = 'Python is now ready. You may proceed.'</py-script>
<div id="python-status">Python is currently starting. Please wait...</div>
</p>
<p>
<button id="run-all-button" class="btn btn-primary" type="submit" py-onClick="run_all_micrograd_demo()">Run All</button><br>
<py-script src="/micrograd_ai.py"></py-script>
<div id="micrograd-run-all-print-div"></div><br>
<div id="micrograd-run-all-fig1-div"></div>
<div id="micrograd-run-all-fig2-div"></div><br>
</p>
</div>
<py-repl auto-generate="false">
import random
import numpy as np
import matplotlib.pyplot as plt
</py-repl><br>
<py-repl auto-generate="false">
from micrograd.engine import Value
from micrograd.nn import Neuron, Layer, MLP
</py-repl><br>
<py-repl auto-generate="true">
np.random.seed(1337)
random.seed(1337)
</py-repl><br>
<py-repl auto-generate="true">
#An adaptation of sklearn's make_moons function https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
def make_moons(n_samples=100, noise=None):
n_samples_out, n_samples_in = n_samples, n_samples
outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out))
outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out))
inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in))
inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - 0.5
X = np.vstack([np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y)]).T
y = np.hstack([np.zeros(n_samples_out, dtype=np.intp), np.ones(n_samples_in, dtype=np.intp)])
if noise is not None: X += np.random.normal(loc=0.0, scale=noise, size=X.shape)
return X, y
X, y = make_moons(n_samples=100, noise=0.1)
</py-repl><br>
<py-repl auto-generate="true">
y = y*2 - 1 # make y be -1 or 1
# visualize in 2D
plt.figure(figsize=(5,5))
plt.scatter(X[:,0], X[:,1], c=y, s=20, cmap='jet')
plt
</py-repl><br>
<py-repl auto-generate="true">
model = MLP(2, [16, 16, 1]) # 2-layer neural network
print(model)
print("number of parameters", len(model.parameters()))
</py-repl><br>
<div>
Line 24 has been changed from: <br>
<code>accuracy = [(yi &gt; 0) == (scorei.data &gt; 0) for yi, scorei in zip(yb, scores)]</code><br>
to: <br>
<code>accuracy = [((yi).__gt__(0)) == ((scorei.data).__gt__(0)) for yi, scorei in zip(yb, scores)]</code><br>
</div>
<py-repl auto-generate="true">
# loss function
def loss(batch_size=None):
# inline DataLoader :)
if batch_size is None:
Xb, yb = X, y
else:
ri = np.random.permutation(X.shape[0])[:batch_size]
Xb, yb = X[ri], y[ri]
inputs = [list(map(Value, xrow)) for xrow in Xb]
# forward the model to get scores
scores = list(map(model, inputs))
# svm "max-margin" loss
losses = [(1 + -yi*scorei).relu() for yi, scorei in zip(yb, scores)]
data_loss = sum(losses) * (1.0 / len(losses))
# L2 regularization
alpha = 1e-4
reg_loss = alpha * sum((p*p for p in model.parameters()))
total_loss = data_loss + reg_loss
# also get accuracy
accuracy = [((yi).__gt__(0)) == ((scorei.data).__gt__(0)) for yi, scorei in zip(yb, scores)]
return total_loss, sum(accuracy) / len(accuracy)
total_loss, acc = loss()
print(total_loss, acc)
</py-repl><br>
<py-repl auto-generate="true">
# optimization
for k in range(20): #was 100. Accuracy can be further improved w/ more epochs (to 100%).
# forward
total_loss, acc = loss()
# backward
model.zero_grad()
total_loss.backward()
# update (sgd)
learning_rate = 1.0 - 0.9*k/100
for p in model.parameters():
p.data -= learning_rate * p.grad
if k % 1 == 0:
print(f"step {k} loss {total_loss.data}, accuracy {acc*100}%")
</py-repl><br>
<div>
<p>
Please wait for the training loop above to complete. It will not print out stats until it
has completely finished. This typically takes 1-2 min. <br><br>
Line 9 has been changed from: <br>
<code>Z = np.array([s.data &gt; 0 for s in scores])</code><br>
to: <br>
<code>Z = np.array([(s.data).__gt__(0) for s in scores])</code><br>
</p>
</div>
<py-repl auto-generate="true">
h = 0.25
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Xmesh = np.c_[xx.ravel(), yy.ravel()]
inputs = [list(map(Value, xrow)) for xrow in Xmesh]
scores = list(map(model, inputs))
Z = np.array([(s.data).__gt__(0) for s in scores])
Z = Z.reshape(xx.shape)
fig = plt.figure()
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt
</py-repl><br>
<py-repl auto-generate="true">
1+1
</py-repl><br>
</body>
</html>
<!-- Adapted by Mat Miller -->