mirror of
https://github.com/pyscript/pyscript.git
synced 2025-12-19 18:27:29 -05:00
* remove pys-on* and py-on* attributes * update changelog * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix eslint --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
197 lines
8.7 KiB
HTML
197 lines
8.7 KiB
HTML
<!doctype html>
|
|
<html lang="en">
|
|
<head>
|
|
<meta charset="utf-8" />
|
|
<link rel="icon" type="image/x-icon" href="./favicon.png" />
|
|
|
|
<title>micrograd</title>
|
|
|
|
<link
|
|
rel="stylesheet"
|
|
href="https://pyscript.net/latest/pyscript.css"
|
|
/>
|
|
<script defer src="https://pyscript.net/latest/pyscript.js"></script>
|
|
|
|
<link
|
|
href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"
|
|
rel="stylesheet"
|
|
crossorigin="anonymous"
|
|
/>
|
|
</head>
|
|
|
|
<body
|
|
style="
|
|
padding-top: 20px;
|
|
padding-right: 20px;
|
|
padding-bottom: 20px;
|
|
padding-left: 20px;
|
|
"
|
|
>
|
|
<h1>Micrograd - A tiny Autograd engine (with a bite! :))</h1>
|
|
<br />
|
|
|
|
<py-config>
|
|
packages = [
|
|
"micrograd",
|
|
"numpy",
|
|
"matplotlib"
|
|
]
|
|
</py-config>
|
|
|
|
<div>
|
|
<p>
|
|
<a href="https://github.com/karpathy/micrograd">Micrograd</a> is
|
|
a tiny Autograd engine created by
|
|
<a href="https://twitter.com/karpathy">Andrej Karpathy</a>. This
|
|
app recreates the
|
|
<a
|
|
href="https://github.com/karpathy/micrograd/blob/master/demo.ipynb"
|
|
>demo</a
|
|
>
|
|
he prepared for this package using pyscript to train a basic
|
|
model, written in Python, natively in the browser. <br />
|
|
</p>
|
|
</div>
|
|
<div>
|
|
<p>
|
|
You may run each Python REPL cell interactively by pressing
|
|
(Shift + Enter) or (Ctrl + Enter). You can also modify the code
|
|
directly as you wish. If you want to run all the code at once,
|
|
not each cell individually, you may instead click the 'Run All'
|
|
button. Training the model takes between 1-2 min if you decide
|
|
to 'Run All' at once. 'Run All' is your only option if you are
|
|
running this on a mobile device where you cannot press (Shift +
|
|
Enter). After the model is trained, a plot image should be
|
|
displayed depicting the model's ability to classify the data.
|
|
<br />
|
|
</p>
|
|
<p>
|
|
Currently the <code>></code> symbol is being imported
|
|
incorrectly as <code>&gt;</code> into the REPL's. In this
|
|
app the <code>></code> symbol has been replaced with
|
|
<code>().__gt__()</code> so you can run the code without issue.
|
|
Ex: instead of <code>a > b</code>, you will see
|
|
<code>(a).__gt__(b)</code> instead. <br />
|
|
</p>
|
|
<py-script>
|
|
import js; js.document.getElementById('python-status').innerHTML = 'Python is now ready. You may proceed.'
|
|
</py-script>
|
|
<div id="python-status">
|
|
Python is currently starting. Please wait...
|
|
</div>
|
|
<button
|
|
id="run-all-button"
|
|
class="btn btn-primary"
|
|
type="submit"
|
|
py-click="run_all_micrograd_demo()"
|
|
>
|
|
Run All</button
|
|
><br />
|
|
<py-script src="/micrograd_ai.py"></py-script>
|
|
<div id="micrograd-run-all-print-div"></div>
|
|
<br />
|
|
<div id="micrograd-run-all-fig1-div"></div>
|
|
<div id="micrograd-run-all-fig2-div"></div>
|
|
<br />
|
|
</div>
|
|
<py-repl auto-generate="false">
|
|
import random import numpy as np import matplotlib.pyplot as plt </py-repl
|
|
><br />
|
|
<py-repl auto-generate="false">
|
|
from micrograd.engine import Value from micrograd.nn import Neuron,
|
|
Layer, MLP </py-repl
|
|
><br />
|
|
<py-repl auto-generate="true">
|
|
np.random.seed(1337) random.seed(1337) </py-repl
|
|
><br />
|
|
<py-repl auto-generate="true">
|
|
#An adaptation of sklearn's make_moons function
|
|
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
|
|
def make_moons(n_samples=100, noise=None): n_samples_out,
|
|
n_samples_in = n_samples, n_samples outer_circ_x =
|
|
np.cos(np.linspace(0, np.pi, n_samples_out)) outer_circ_y =
|
|
np.sin(np.linspace(0, np.pi, n_samples_out)) inner_circ_x = 1 -
|
|
np.cos(np.linspace(0, np.pi, n_samples_in)) inner_circ_y = 1 -
|
|
np.sin(np.linspace(0, np.pi, n_samples_in)) - 0.5 X =
|
|
np.vstack([np.append(outer_circ_x, inner_circ_x),
|
|
np.append(outer_circ_y, inner_circ_y)]).T y =
|
|
np.hstack([np.zeros(n_samples_out, dtype=np.intp),
|
|
np.ones(n_samples_in, dtype=np.intp)]) if noise is not None: X +=
|
|
np.random.normal(loc=0.0, scale=noise, size=X.shape) return X, y X,
|
|
y = make_moons(n_samples=100, noise=0.1) </py-repl
|
|
><br />
|
|
<py-repl auto-generate="true">
|
|
y = y*2 - 1 # make y be -1 or 1 # visualize in 2D
|
|
plt.figure(figsize=(5,5)) plt.scatter(X[:,0], X[:,1], c=y, s=20,
|
|
cmap='jet') plt </py-repl
|
|
><br />
|
|
<py-repl auto-generate="true">
|
|
model = MLP(2, [16, 16, 1]) # 2-layer neural network print(model)
|
|
print("number of parameters", len(model.parameters())) </py-repl
|
|
><br />
|
|
|
|
<div>
|
|
Line 24 has been changed from: <br />
|
|
<code
|
|
>accuracy = [(yi > 0) == (scorei.data > 0) for yi, scorei
|
|
in zip(yb, scores)]</code
|
|
><br />
|
|
to: <br />
|
|
<code
|
|
>accuracy = [((yi).__gt__(0)) == ((scorei.data).__gt__(0)) for
|
|
yi, scorei in zip(yb, scores)]</code
|
|
><br />
|
|
</div>
|
|
|
|
<py-repl auto-generate="true">
|
|
# loss function def loss(batch_size=None): # inline DataLoader :) if
|
|
batch_size is None: Xb, yb = X, y else: ri =
|
|
np.random.permutation(X.shape[0])[:batch_size] Xb, yb = X[ri], y[ri]
|
|
inputs = [list(map(Value, xrow)) for xrow in Xb] # forward the model
|
|
to get scores scores = list(map(model, inputs)) # svm "max-margin"
|
|
loss losses = [(1 + -yi*scorei).relu() for yi, scorei in zip(yb,
|
|
scores)] data_loss = sum(losses) * (1.0 / len(losses)) # L2
|
|
regularization alpha = 1e-4 reg_loss = alpha * sum((p*p for p in
|
|
model.parameters())) total_loss = data_loss + reg_loss # also get
|
|
accuracy accuracy = [((yi).__gt__(0)) == ((scorei.data).__gt__(0))
|
|
for yi, scorei in zip(yb, scores)] return total_loss, sum(accuracy)
|
|
/ len(accuracy) total_loss, acc = loss() print(total_loss, acc) </py-repl
|
|
><br />
|
|
<py-repl auto-generate="true">
|
|
# optimization for k in range(20): #was 100. Accuracy can be further
|
|
improved w/ more epochs (to 100%). # forward total_loss, acc =
|
|
loss() # backward model.zero_grad() total_loss.backward() # update
|
|
(sgd) learning_rate = 1.0 - 0.9*k/100 for p in model.parameters():
|
|
p.data -= learning_rate * p.grad if k % 1 == 0: print(f"step {k}
|
|
loss {total_loss.data}, accuracy {acc*100}%") </py-repl
|
|
><br />
|
|
<div>
|
|
<p>
|
|
Please wait for the training loop above to complete. It will not
|
|
print out stats until it has completely finished. This typically
|
|
takes 1-2 min. <br /><br />
|
|
|
|
Line 9 has been changed from: <br />
|
|
<code>Z = np.array([s.data > 0 for s in scores])</code><br />
|
|
to: <br />
|
|
<code>Z = np.array([(s.data).__gt__(0) for s in scores])</code
|
|
><br />
|
|
</p>
|
|
</div>
|
|
<py-repl auto-generate="true">
|
|
h = 0.25 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min,
|
|
y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy =
|
|
np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
|
|
Xmesh = np.c_[xx.ravel(), yy.ravel()] inputs = [list(map(Value,
|
|
xrow)) for xrow in Xmesh] scores = list(map(model, inputs)) Z =
|
|
np.array([(s.data).__gt__(0) for s in scores]) Z =
|
|
Z.reshape(xx.shape) fig = plt.figure() plt.contourf(xx, yy, Z,
|
|
cmap=plt.cm.Spectral, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y,
|
|
s=40, cmap=plt.cm.Spectral) plt.xlim(xx.min(), xx.max())
|
|
plt.ylim(yy.min(), yy.max()) plt </py-repl
|
|
><br />
|
|
<py-repl auto-generate="true"> 1+1 </py-repl><br />
|
|
</body>
|
|
</html>
|
|
<!-- Adapted by Mat Miller -->
|