Files
pyscript/examples/micrograd_ai.py
pre-commit-ci[bot] 34dfe2d80b [pre-commit.ci] pre-commit autoupdate (#1153)
* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/psf/black: 22.12.0 → 23.1.0](https://github.com/psf/black/compare/22.12.0...23.1.0)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-02-07 11:17:57 +05:30

160 lines
4.7 KiB
Python

# Credit: https://github.com/karpathy/micrograd/blob/master/demo.ipynb
# cell
import datetime
import random
import matplotlib.pyplot as plt
import numpy as np
# cell
from micrograd.engine import Value
from micrograd.nn import MLP
print_statements = []
def run_all_micrograd_demo(*args, **kwargs):
result = micrograd_demo()
pyscript.write("micrograd-run-all-fig2-div", result)
def print_div(o):
o = str(o)
print_statements.append(o + " \n<br>")
pyscript.write("micrograd-run-all-print-div", "".join(print_statements))
# All code is wrapped in this run_all function so it optionally executed (called)
# from pyscript when a button is pressed.
def micrograd_demo(*args, **kwargs):
"""
Runs the micrograd demo.
*args and **kwargs do nothing and are only there to capture any parameters passed
from pyscript when this function is called when a button is clicked.
"""
# cell
start = datetime.datetime.now()
print_div("Starting...")
# cell
np.random.seed(1337)
random.seed(1337)
# cell
# An adaptation of sklearn's make_moons function
# https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
def make_moons(n_samples=100, noise=None):
n_samples_out, n_samples_in = n_samples, n_samples
outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out))
outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out))
inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in))
inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - 0.5
X = np.vstack(
[
np.append(outer_circ_x, inner_circ_x),
np.append(outer_circ_y, inner_circ_y),
]
).T
y = np.hstack(
[
np.zeros(n_samples_out, dtype=np.intp),
np.ones(n_samples_in, dtype=np.intp),
]
)
if noise is not None:
X += np.random.normal(loc=0.0, scale=noise, size=X.shape)
return X, y
X, y = make_moons(n_samples=100, noise=0.1)
# cell
y = y * 2 - 1 # make y be -1 or 1
# visualize in 2D
plt.figure(figsize=(5, 5))
plt.scatter(X[:, 0], X[:, 1], c=y, s=20, cmap="jet")
plt
pyscript.write("micrograd-run-all-fig1-div", plt)
# cell
model = MLP(2, [16, 16, 1]) # 2-layer neural network
print_div(model)
print_div(("number of parameters", len(model.parameters())))
# cell
# loss function
def loss(batch_size=None):
# inline DataLoader :)
if batch_size is None:
Xb, yb = X, y
else:
ri = np.random.permutation(X.shape[0])[:batch_size]
Xb, yb = X[ri], y[ri]
inputs = [list(map(Value, xrow)) for xrow in Xb]
# forward the model to get scores
scores = list(map(model, inputs))
# svm "max-margin" loss
losses = [(1 + -yi * scorei).relu() for yi, scorei in zip(yb, scores)]
data_loss = sum(losses) * (1.0 / len(losses))
# L2 regularization
alpha = 1e-4
reg_loss = alpha * sum(p * p for p in model.parameters())
total_loss = data_loss + reg_loss
# also get accuracy
accuracy = [
((yi).__gt__(0)) == ((scorei.data).__gt__(0))
for yi, scorei in zip(yb, scores)
]
return total_loss, sum(accuracy) / len(accuracy)
total_loss, acc = loss()
print((total_loss, acc))
# cell
# optimization
for k in range(20): # was 100
# forward
total_loss, _ = loss()
# backward
model.zero_grad()
total_loss.backward()
# update (sgd)
learning_rate = 1.0 - 0.9 * k / 100
for p in model.parameters():
p.data -= learning_rate * p.grad
if k % 1 == 0:
# print(f"step {k} loss {total_loss.data}, accuracy {acc*100}%")
print_div(f"step {k} loss {total_loss.data}, accuracy {acc*100}%")
# cell
h = 0.25
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Xmesh = np.c_[xx.ravel(), yy.ravel()]
inputs = [list(map(Value, xrow)) for xrow in Xmesh]
scores = list(map(model, inputs))
Z = np.array([(s.data).__gt__(0) for s in scores])
Z = Z.reshape(xx.shape)
_ = plt.figure()
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
finish = datetime.datetime.now()
print_div(f"It took {(finish-start).seconds} seconds to run this code.")
plt
return plt