build: move oss required to build conhost out of dep/ (#5451)

This change is necessary as the dep/ folder is not synced into the
Windows source tree.

I've also added a build rule producing a lib for {fmt}.

This will be required for our next OS ingestion.
This commit is contained in:
Dustin L. Howett (MSFT)
2020-04-21 14:43:09 -07:00
committed by GitHub
parent bc6ea11233
commit 86685079ec
56 changed files with 49 additions and 8 deletions

View File

@@ -1,27 +0,0 @@
// Copyright 2015 The Chromium Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@@ -1,17 +0,0 @@
### Notes for Future Maintainers
This was originally imported by @miniksa in January 2020.
The provenance information (where it came from and which commit) is stored in the file `cgmanifest.json` in the same directory as this readme.
Please update the provenance information in that file when ingesting an updated version of the dependent library.
That provenance file is automatically read and inventoried by Microsoft systems to ensure compliance with appropiate governance standards.
## What should be done to update this in the future?
1. Go to chromium/chromium repository on GitHub.
2. Take the entire contents of the base/numerics directory wholesale and drop it in the base/numerics directory here.
3. Don't change anything about it.
4. Validate that the license in the root of the repository didn't change and update it if so. It is sitting in the same directory as this readme.
If it changed dramatically, ensure that it is still compatible with our license scheme. Also update the NOTICE file in the root of our repository to declare the third-party usage.
5. Submit the pull.

View File

@@ -1,28 +0,0 @@
# Copyright (c) 2017 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
# This is a dependency-free, header-only, library, and it needs to stay that
# way to facilitate pulling it into various third-party projects. So, this
# file is here to protect against accidentally introducing external
# dependencies or depending on internal implementation details.
source_set("base_numerics") {
visibility = [ "//base/*" ]
sources = [
"checked_math_impl.h",
"clamped_math_impl.h",
"safe_conversions_arm_impl.h",
"safe_conversions_impl.h",
"safe_math_arm_impl.h",
"safe_math_clang_gcc_impl.h",
"safe_math_shared_impl.h",
]
public = [
"checked_math.h",
"clamped_math.h",
"math_constants.h",
"ranges.h",
"safe_conversions.h",
"safe_math.h",
]
}

View File

@@ -1,7 +0,0 @@
# This is a dependency-free, header-only, library, and it needs to stay that
# way to facilitate pulling it into various third-party projects. So, this
# file is here to protect against accidentally introducing dependencies.
include_rules = [
"-base",
"+base/numerics",
]

View File

@@ -1,5 +0,0 @@
jschuh@chromium.org
tsepez@chromium.org
# COMPONENT: Internals

View File

@@ -1,409 +0,0 @@
# `base/numerics`
This directory contains a dependency-free, header-only library of templates
providing well-defined semantics for safely and performantly handling a variety
of numeric operations, including most common arithmetic operations and
conversions.
The public API is broken out into the following header files:
* `checked_math.h` contains the `CheckedNumeric` template class and helper
functions for performing arithmetic and conversion operations that detect
errors and boundary conditions (e.g. overflow, truncation, etc.).
* `clamped_math.h` contains the `ClampedNumeric` template class and
helper functions for performing fast, clamped (i.e. [non-sticky](#notsticky)
saturating) arithmetic operations and conversions.
* `safe_conversions.h` contains the `StrictNumeric` template class and
a collection of custom casting templates and helper functions for safely
converting between a range of numeric types.
* `safe_math.h` includes all of the previously mentioned headers.
*** aside
**Note:** The `Numeric` template types implicitly convert from C numeric types
and `Numeric` templates that are convertable to an underlying C numeric type.
The conversion priority for `Numeric` type coercions is:
* `StrictNumeric` coerces to `ClampedNumeric` and `CheckedNumeric`
* `ClampedNumeric` coerces to `CheckedNumeric`
***
[TOC]
## Common patterns and use-cases
The following covers the preferred style for the most common uses of this
library. Please don't cargo-cult from anywhere else. 😉
### Performing checked arithmetic type conversions
The `checked_cast` template converts between arbitrary arithmetic types, and is
used for cases where a conversion failure should result in program termination:
```cpp
// Crash if signed_value is out of range for buff_size.
size_t buff_size = checked_cast<size_t>(signed_value);
```
### Performing saturated (clamped) arithmetic type conversions
The `saturated_cast` template converts between arbitrary arithmetic types, and
is used in cases where an out-of-bounds source value should be saturated to the
corresponding maximum or minimum of the destination type:
```cpp
// Convert from float with saturation to INT_MAX, INT_MIN, or 0 for NaN.
int int_value = saturated_cast<int>(floating_point_value);
```
### Enforcing arithmetic type conversions at compile-time
The `strict_cast` emits code that is identical to `static_cast`. However,
provides static checks that will cause a compilation failure if the
destination type cannot represent the full range of the source type:
```cpp
// Throw a compiler error if byte_value is changed to an out-of-range-type.
int int_value = strict_cast<int>(byte_value);
```
You can also enforce these compile-time restrictions on function parameters by
using the `StrictNumeric` template:
```cpp
// Throw a compiler error if the size argument cannot be represented by a
// size_t (e.g. passing an int will fail to compile).
bool AllocateBuffer(void** buffer, StrictCast<size_t> size);
```
### Comparing values between arbitrary arithmetic types
Both the `StrictNumeric` and `ClampedNumeric` types provide well defined
comparisons between arbitrary arithmetic types. This allows you to perform
comparisons that are not legal or would trigger compiler warnings or errors
under the normal arithmetic promotion rules:
```cpp
bool foo(unsigned value, int upper_bound) {
// Converting to StrictNumeric allows this comparison to work correctly.
if (MakeStrictNum(value) >= upper_bound)
return false;
```
*** note
**Warning:** Do not perform manual conversions using the comparison operators.
Instead, use the cast templates described in the previous sections, or the
constexpr template functions `IsValueInRangeForNumericType` and
`IsTypeInRangeForNumericType`, as these templates properly handle the full range
of corner cases and employ various optimizations.
***
### Calculating a buffer size (checked arithmetic)
When making exact calculations—such as for buffer lengths—it's often necessary
to know when those calculations trigger an overflow, undefined behavior, or
other boundary conditions. The `CheckedNumeric` template does this by storing
a bit determining whether or not some arithmetic operation has occured that
would put the variable in an "invalid" state. Attempting to extract the value
from a variable in an invalid state will trigger a check/trap condition, that
by default will result in process termination.
Here's an example of a buffer calculation using a `CheckedNumeric` type (note:
the AssignIfValid method will trigger a compile error if the result is ignored).
```cpp
// Calculate the buffer size and detect if an overflow occurs.
size_t size;
if (!CheckAdd(kHeaderSize, CheckMul(count, kItemSize)).AssignIfValid(&size)) {
// Handle an overflow error...
}
```
### Calculating clamped coordinates (non-sticky saturating arithmetic)
Certain classes of calculations—such as coordinate calculations—require
well-defined semantics that always produce a valid result on boundary
conditions. The `ClampedNumeric` template addresses this by providing
performant, non-sticky saturating arithmetic operations.
Here's an example of using a `ClampedNumeric` to calculate an operation
insetting a rectangle.
```cpp
// Use clamped arithmetic since inset calculations might overflow.
void Rect::Inset(int left, int top, int right, int bottom) {
origin_ += Vector2d(left, top);
set_width(ClampSub(width(), ClampAdd(left, right)));
set_height(ClampSub(height(), ClampAdd(top, bottom)));
}
```
*** note
<a name="notsticky"></a>
The `ClampedNumeric` type is not "sticky", which means the saturation is not
retained across individual operations. As such, one arithmetic operation may
result in a saturated value, while the next operation may then "desaturate"
the value. Here's an example:
```cpp
ClampedNumeric<int> value = INT_MAX;
++value; // value is still INT_MAX, due to saturation.
--value; // value is now (INT_MAX - 1), because saturation is not sticky.
```
***
## Conversion functions and StrictNumeric<> in safe_conversions.h
This header includes a collection of helper `constexpr` templates for safely
performing a range of conversions, assignments, and tests.
### Safe casting templates
* `as_signed()` - Returns the supplied integral value as a signed type of
the same width.
* `as_unsigned()` - Returns the supplied integral value as an unsigned type
of the same width.
* `checked_cast<>()` - Analogous to `static_cast<>` for numeric types, except
that by default it will trigger a crash on an out-of-bounds conversion (e.g.
overflow, underflow, NaN to integral) or a compile error if the conversion
error can be detected at compile time. The crash handler can be overridden
to perform a behavior other than crashing.
* `saturated_cast<>()` - Analogous to `static_cast` for numeric types, except
that it returns a saturated result when the specified numeric conversion
would otherwise overflow or underflow. An NaN source returns 0 by
default, but can be overridden to return a different result.
* `strict_cast<>()` - Analogous to `static_cast` for numeric types, except
this causes a compile failure if the destination type is not large
enough to contain any value in the source type. It performs no runtime
checking and thus introduces no runtime overhead.
### Other helper and conversion functions
* `IsValueInRangeForNumericType<>()` - A convenience function that returns
true if the type supplied as the template parameter can represent the value
passed as an argument to the function.
* `IsTypeInRangeForNumericType<>()` - A convenience function that evaluates
entirely at compile-time and returns true if the destination type (first
template parameter) can represent the full range of the source type
(second template parameter).
* `IsValueNegative()` - A convenience function that will accept any
arithmetic type as an argument and will return whether the value is less
than zero. Unsigned types always return false.
* `SafeUnsignedAbs()` - Returns the absolute value of the supplied integer
parameter as an unsigned result (thus avoiding an overflow if the value
is the signed, two's complement minimum).
### StrictNumeric<>
`StrictNumeric<>` is a wrapper type that performs assignments and copies via
the `strict_cast` template, and can perform valid arithmetic comparisons
across any range of arithmetic types. `StrictNumeric` is the return type for
values extracted from a `CheckedNumeric` class instance. The raw numeric value
is extracted via `static_cast` to the underlying type or any type with
sufficient range to represent the underlying type.
* `MakeStrictNum()` - Creates a new `StrictNumeric` from the underlying type
of the supplied arithmetic or StrictNumeric type.
* `SizeT` - Alias for `StrictNumeric<size_t>`.
## CheckedNumeric<> in checked_math.h
`CheckedNumeric<>` implements all the logic and operators for detecting integer
boundary conditions such as overflow, underflow, and invalid conversions.
The `CheckedNumeric` type implicitly converts from floating point and integer
data types, and contains overloads for basic arithmetic operations (i.e.: `+`,
`-`, `*`, `/` for all types and `%`, `<<`, `>>`, `&`, `|`, `^` for integers).
However, *the [variadic template functions
](#CheckedNumeric_in-checked_math_h-Non_member-helper-functions)
are the prefered API,* as they remove type ambiguities and help prevent a number
of common errors. The variadic functions can also be more performant, as they
eliminate redundant expressions that are unavoidable with the with the operator
overloads. (Ideally the compiler should optimize those away, but better to avoid
them in the first place.)
Type promotions are a slightly modified version of the [standard C/C++ numeric
promotions
](http://en.cppreference.com/w/cpp/language/implicit_conversion#Numeric_promotions)
with the two differences being that *there is no default promotion to int*
and *bitwise logical operations always return an unsigned of the wider type.*
### Members
The unary negation, increment, and decrement operators are supported, along
with the following unary arithmetic methods, which return a new
`CheckedNumeric` as a result of the operation:
* `Abs()` - Absolute value.
* `UnsignedAbs()` - Absolute value as an equal-width unsigned underlying type
(valid for only integral types).
* `Max()` - Returns whichever is greater of the current instance or argument.
The underlying return type is whichever has the greatest magnitude.
* `Min()` - Returns whichever is lowest of the current instance or argument.
The underlying return type is whichever has can represent the lowest
number in the smallest width (e.g. int8_t over unsigned, int over
int8_t, and float over int).
The following are for converting `CheckedNumeric` instances:
* `type` - The underlying numeric type.
* `AssignIfValid()` - Assigns the underlying value to the supplied
destination pointer if the value is currently valid and within the
range supported by the destination type. Returns true on success.
* `Cast<>()` - Instance method returning a `CheckedNumeric` derived from
casting the current instance to a `CheckedNumeric` of the supplied
destination type.
*** aside
The following member functions return a `StrictNumeric`, which is valid for
comparison and assignment operations, but will trigger a compile failure on
attempts to assign to a type of insufficient range. The underlying value can
be extracted by an explicit `static_cast` to the underlying type or any type
with sufficient range to represent the underlying type.
***
* `IsValid()` - Returns true if the underlying numeric value is valid (i.e.
has not wrapped or saturated and is not the result of an invalid
conversion).
* `ValueOrDie()` - Returns the underlying value. If the state is not valid
this call will trigger a crash by default (but may be overridden by
supplying an alternate handler to the template).
* `ValueOrDefault()` - Returns the current value, or the supplied default if
the state is not valid (but will not crash).
**Comparison operators are explicitly not provided** for `CheckedNumeric`
types because they could result in a crash if the type is not in a valid state.
Patterns like the following should be used instead:
```cpp
// Either input or padding (or both) may be arbitrary sizes.
size_t buff_size;
if (!CheckAdd(input, padding, kHeaderLength).AssignIfValid(&buff_size) ||
buff_size >= kMaxBuffer) {
// Handle an error...
} else {
// Do stuff on success...
}
```
### Non-member helper functions
The following variadic convenience functions, which accept standard arithmetic
or `CheckedNumeric` types, perform arithmetic operations, and return a
`CheckedNumeric` result. The supported functions are:
* `CheckAdd()` - Addition.
* `CheckSub()` - Subtraction.
* `CheckMul()` - Multiplication.
* `CheckDiv()` - Division.
* `CheckMod()` - Modulus (integer only).
* `CheckLsh()` - Left integer shift (integer only).
* `CheckRsh()` - Right integer shift (integer only).
* `CheckAnd()` - Bitwise AND (integer only with unsigned result).
* `CheckOr()` - Bitwise OR (integer only with unsigned result).
* `CheckXor()` - Bitwise XOR (integer only with unsigned result).
* `CheckMax()` - Maximum of supplied arguments.
* `CheckMin()` - Minimum of supplied arguments.
The following wrapper functions can be used to avoid the template
disambiguator syntax when converting a destination type.
* `IsValidForType<>()` in place of: `a.template IsValid<>()`
* `ValueOrDieForType<>()` in place of: `a.template ValueOrDie<>()`
* `ValueOrDefaultForType<>()` in place of: `a.template ValueOrDefault<>()`
The following general utility methods is are useful for converting from
arithmetic types to `CheckedNumeric` types:
* `MakeCheckedNum()` - Creates a new `CheckedNumeric` from the underlying type
of the supplied arithmetic or directly convertible type.
## ClampedNumeric<> in clamped_math.h
`ClampedNumeric<>` implements all the logic and operators for clamped
(non-sticky saturating) arithmetic operations and conversions. The
`ClampedNumeric` type implicitly converts back and forth between floating point
and integer data types, saturating on assignment as appropriate. It contains
overloads for basic arithmetic operations (i.e.: `+`, `-`, `*`, `/` for
all types and `%`, `<<`, `>>`, `&`, `|`, `^` for integers) along with comparison
operators for arithmetic types of any size. However, *the [variadic template
functions
](#ClampedNumeric_in-clamped_math_h-Non_member-helper-functions)
are the prefered API,* as they remove type ambiguities and help prevent
a number of common errors. The variadic functions can also be more performant,
as they eliminate redundant expressions that are unavoidable with the operator
overloads. (Ideally the compiler should optimize those away, but better to avoid
them in the first place.)
Type promotions are a slightly modified version of the [standard C/C++ numeric
promotions
](http://en.cppreference.com/w/cpp/language/implicit_conversion#Numeric_promotions)
with the two differences being that *there is no default promotion to int*
and *bitwise logical operations always return an unsigned of the wider type.*
*** aside
Most arithmetic operations saturate normally, to the numeric limit in the
direction of the sign. The potentially unusual cases are:
* **Division:** Division by zero returns the saturated limit in the direction
of sign of the dividend (first argument). The one exception is 0/0, which
returns zero (although logically is NaN).
* **Modulus:** Division by zero returns the dividend (first argument).
* **Left shift:** Non-zero values saturate in the direction of the signed
limit (max/min), even for shifts larger than the bit width. 0 shifted any
amount results in 0.
* **Right shift:** Negative values saturate to -1. Positive or 0 saturates
to 0. (Effectively just an unbounded arithmetic-right-shift.)
* **Bitwise operations:** No saturation; bit pattern is identical to
non-saturated bitwise operations.
***
### Members
The unary negation, increment, and decrement operators are supported, along
with the following unary arithmetic methods, which return a new
`ClampedNumeric` as a result of the operation:
* `Abs()` - Absolute value.
* `UnsignedAbs()` - Absolute value as an equal-width unsigned underlying type
(valid for only integral types).
* `Max()` - Returns whichever is greater of the current instance or argument.
The underlying return type is whichever has the greatest magnitude.
* `Min()` - Returns whichever is lowest of the current instance or argument.
The underlying return type is whichever has can represent the lowest
number in the smallest width (e.g. int8_t over unsigned, int over
int8_t, and float over int).
The following are for converting `ClampedNumeric` instances:
* `type` - The underlying numeric type.
* `RawValue()` - Returns the raw value as the underlying arithmetic type. This
is useful when e.g. assigning to an auto type or passing as a deduced
template parameter.
* `Cast<>()` - Instance method returning a `ClampedNumeric` derived from
casting the current instance to a `ClampedNumeric` of the supplied
destination type.
### Non-member helper functions
The following variadic convenience functions, which accept standard arithmetic
or `ClampedNumeric` types, perform arithmetic operations, and return a
`ClampedNumeric` result. The supported functions are:
* `ClampAdd()` - Addition.
* `ClampSub()` - Subtraction.
* `ClampMul()` - Multiplication.
* `ClampDiv()` - Division.
* `ClampMod()` - Modulus (integer only).
* `ClampLsh()` - Left integer shift (integer only).
* `ClampRsh()` - Right integer shift (integer only).
* `ClampAnd()` - Bitwise AND (integer only with unsigned result).
* `ClampOr()` - Bitwise OR (integer only with unsigned result).
* `ClampXor()` - Bitwise XOR (integer only with unsigned result).
* `ClampMax()` - Maximum of supplied arguments.
* `ClampMin()` - Minimum of supplied arguments.
The following is a general utility method that is useful for converting
to a `ClampedNumeric` type:
* `MakeClampedNum()` - Creates a new `ClampedNumeric` from the underlying type
of the supplied arithmetic or directly convertible type.

View File

@@ -1,393 +0,0 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_CHECKED_MATH_H_
#define BASE_NUMERICS_CHECKED_MATH_H_
#include <stddef.h>
#include <limits>
#include <type_traits>
#include "base/numerics/checked_math_impl.h"
namespace base {
namespace internal {
template <typename T>
class CheckedNumeric {
static_assert(std::is_arithmetic<T>::value,
"CheckedNumeric<T>: T must be a numeric type.");
public:
using type = T;
constexpr CheckedNumeric() = default;
// Copy constructor.
template <typename Src>
constexpr CheckedNumeric(const CheckedNumeric<Src>& rhs)
: state_(rhs.state_.value(), rhs.IsValid()) {}
template <typename Src>
friend class CheckedNumeric;
// This is not an explicit constructor because we implicitly upgrade regular
// numerics to CheckedNumerics to make them easier to use.
template <typename Src>
constexpr CheckedNumeric(Src value) // NOLINT(runtime/explicit)
: state_(value) {
static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
}
// This is not an explicit constructor because we want a seamless conversion
// from StrictNumeric types.
template <typename Src>
constexpr CheckedNumeric(
StrictNumeric<Src> value) // NOLINT(runtime/explicit)
: state_(static_cast<Src>(value)) {}
// IsValid() - The public API to test if a CheckedNumeric is currently valid.
// A range checked destination type can be supplied using the Dst template
// parameter.
template <typename Dst = T>
constexpr bool IsValid() const {
return state_.is_valid() &&
IsValueInRangeForNumericType<Dst>(state_.value());
}
// AssignIfValid(Dst) - Assigns the underlying value if it is currently valid
// and is within the range supported by the destination type. Returns true if
// successful and false otherwise.
template <typename Dst>
#if defined(__clang__) || defined(__GNUC__)
__attribute__((warn_unused_result))
#elif defined(_MSC_VER)
_Check_return_
#endif
constexpr bool
AssignIfValid(Dst* result) const {
return BASE_NUMERICS_LIKELY(IsValid<Dst>())
? ((*result = static_cast<Dst>(state_.value())), true)
: false;
}
// ValueOrDie() - The primary accessor for the underlying value. If the
// current state is not valid it will CHECK and crash.
// A range checked destination type can be supplied using the Dst template
// parameter, which will trigger a CHECK if the value is not in bounds for
// the destination.
// The CHECK behavior can be overridden by supplying a handler as a
// template parameter, for test code, etc. However, the handler cannot access
// the underlying value, and it is not available through other means.
template <typename Dst = T, class CheckHandler = CheckOnFailure>
constexpr StrictNumeric<Dst> ValueOrDie() const {
return BASE_NUMERICS_LIKELY(IsValid<Dst>())
? static_cast<Dst>(state_.value())
: CheckHandler::template HandleFailure<Dst>();
}
// ValueOrDefault(T default_value) - A convenience method that returns the
// current value if the state is valid, and the supplied default_value for
// any other state.
// A range checked destination type can be supplied using the Dst template
// parameter. WARNING: This function may fail to compile or CHECK at runtime
// if the supplied default_value is not within range of the destination type.
template <typename Dst = T, typename Src>
constexpr StrictNumeric<Dst> ValueOrDefault(const Src default_value) const {
return BASE_NUMERICS_LIKELY(IsValid<Dst>())
? static_cast<Dst>(state_.value())
: checked_cast<Dst>(default_value);
}
// Returns a checked numeric of the specified type, cast from the current
// CheckedNumeric. If the current state is invalid or the destination cannot
// represent the result then the returned CheckedNumeric will be invalid.
template <typename Dst>
constexpr CheckedNumeric<typename UnderlyingType<Dst>::type> Cast() const {
return *this;
}
// This friend method is available solely for providing more detailed logging
// in the the tests. Do not implement it in production code, because the
// underlying values may change at any time.
template <typename U>
friend U GetNumericValueForTest(const CheckedNumeric<U>& src);
// Prototypes for the supported arithmetic operator overloads.
template <typename Src>
constexpr CheckedNumeric& operator+=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator-=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator*=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator/=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator%=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator<<=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator>>=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator&=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator|=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator^=(const Src rhs);
constexpr CheckedNumeric operator-() const {
// The negation of two's complement int min is int min, so we simply
// check for that in the constexpr case.
// We use an optimized code path for a known run-time variable.
return MustTreatAsConstexpr(state_.value()) || !std::is_signed<T>::value ||
std::is_floating_point<T>::value
? CheckedNumeric<T>(
NegateWrapper(state_.value()),
IsValid() && (!std::is_signed<T>::value ||
std::is_floating_point<T>::value ||
NegateWrapper(state_.value()) !=
std::numeric_limits<T>::lowest()))
: FastRuntimeNegate();
}
constexpr CheckedNumeric operator~() const {
return CheckedNumeric<decltype(InvertWrapper(T()))>(
InvertWrapper(state_.value()), IsValid());
}
constexpr CheckedNumeric Abs() const {
return !IsValueNegative(state_.value()) ? *this : -*this;
}
template <typename U>
constexpr CheckedNumeric<typename MathWrapper<CheckedMaxOp, T, U>::type> Max(
const U rhs) const {
using R = typename UnderlyingType<U>::type;
using result_type = typename MathWrapper<CheckedMaxOp, T, U>::type;
// TODO(jschuh): This can be converted to the MathOp version and remain
// constexpr once we have C++14 support.
return CheckedNumeric<result_type>(
static_cast<result_type>(
IsGreater<T, R>::Test(state_.value(), Wrapper<U>::value(rhs))
? state_.value()
: Wrapper<U>::value(rhs)),
state_.is_valid() && Wrapper<U>::is_valid(rhs));
}
template <typename U>
constexpr CheckedNumeric<typename MathWrapper<CheckedMinOp, T, U>::type> Min(
const U rhs) const {
using R = typename UnderlyingType<U>::type;
using result_type = typename MathWrapper<CheckedMinOp, T, U>::type;
// TODO(jschuh): This can be converted to the MathOp version and remain
// constexpr once we have C++14 support.
return CheckedNumeric<result_type>(
static_cast<result_type>(
IsLess<T, R>::Test(state_.value(), Wrapper<U>::value(rhs))
? state_.value()
: Wrapper<U>::value(rhs)),
state_.is_valid() && Wrapper<U>::is_valid(rhs));
}
// This function is available only for integral types. It returns an unsigned
// integer of the same width as the source type, containing the absolute value
// of the source, and properly handling signed min.
constexpr CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>
UnsignedAbs() const {
return CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>(
SafeUnsignedAbs(state_.value()), state_.is_valid());
}
constexpr CheckedNumeric& operator++() {
*this += 1;
return *this;
}
constexpr CheckedNumeric operator++(int) {
CheckedNumeric value = *this;
*this += 1;
return value;
}
constexpr CheckedNumeric& operator--() {
*this -= 1;
return *this;
}
constexpr CheckedNumeric operator--(int) {
CheckedNumeric value = *this;
*this -= 1;
return value;
}
// These perform the actual math operations on the CheckedNumerics.
// Binary arithmetic operations.
template <template <typename, typename, typename> class M,
typename L,
typename R>
static constexpr CheckedNumeric MathOp(const L lhs, const R rhs) {
using Math = typename MathWrapper<M, L, R>::math;
T result = 0;
bool is_valid =
Wrapper<L>::is_valid(lhs) && Wrapper<R>::is_valid(rhs) &&
Math::Do(Wrapper<L>::value(lhs), Wrapper<R>::value(rhs), &result);
return CheckedNumeric<T>(result, is_valid);
}
// Assignment arithmetic operations.
template <template <typename, typename, typename> class M, typename R>
constexpr CheckedNumeric& MathOp(const R rhs) {
using Math = typename MathWrapper<M, T, R>::math;
T result = 0; // Using T as the destination saves a range check.
bool is_valid = state_.is_valid() && Wrapper<R>::is_valid(rhs) &&
Math::Do(state_.value(), Wrapper<R>::value(rhs), &result);
*this = CheckedNumeric<T>(result, is_valid);
return *this;
}
private:
CheckedNumericState<T> state_;
CheckedNumeric FastRuntimeNegate() const {
T result;
bool success = CheckedSubOp<T, T>::Do(T(0), state_.value(), &result);
return CheckedNumeric<T>(result, IsValid() && success);
}
template <typename Src>
constexpr CheckedNumeric(Src value, bool is_valid)
: state_(value, is_valid) {}
// These wrappers allow us to handle state the same way for both
// CheckedNumeric and POD arithmetic types.
template <typename Src>
struct Wrapper {
static constexpr bool is_valid(Src) { return true; }
static constexpr Src value(Src value) { return value; }
};
template <typename Src>
struct Wrapper<CheckedNumeric<Src>> {
static constexpr bool is_valid(const CheckedNumeric<Src> v) {
return v.IsValid();
}
static constexpr Src value(const CheckedNumeric<Src> v) {
return v.state_.value();
}
};
template <typename Src>
struct Wrapper<StrictNumeric<Src>> {
static constexpr bool is_valid(const StrictNumeric<Src>) { return true; }
static constexpr Src value(const StrictNumeric<Src> v) {
return static_cast<Src>(v);
}
};
};
// Convenience functions to avoid the ugly template disambiguator syntax.
template <typename Dst, typename Src>
constexpr bool IsValidForType(const CheckedNumeric<Src> value) {
return value.template IsValid<Dst>();
}
template <typename Dst, typename Src>
constexpr StrictNumeric<Dst> ValueOrDieForType(
const CheckedNumeric<Src> value) {
return value.template ValueOrDie<Dst>();
}
template <typename Dst, typename Src, typename Default>
constexpr StrictNumeric<Dst> ValueOrDefaultForType(
const CheckedNumeric<Src> value,
const Default default_value) {
return value.template ValueOrDefault<Dst>(default_value);
}
// Convience wrapper to return a new CheckedNumeric from the provided arithmetic
// or CheckedNumericType.
template <typename T>
constexpr CheckedNumeric<typename UnderlyingType<T>::type> MakeCheckedNum(
const T value) {
return value;
}
// These implement the variadic wrapper for the math operations.
template <template <typename, typename, typename> class M,
typename L,
typename R>
constexpr CheckedNumeric<typename MathWrapper<M, L, R>::type> CheckMathOp(
const L lhs,
const R rhs) {
using Math = typename MathWrapper<M, L, R>::math;
return CheckedNumeric<typename Math::result_type>::template MathOp<M>(lhs,
rhs);
}
// General purpose wrapper template for arithmetic operations.
template <template <typename, typename, typename> class M,
typename L,
typename R,
typename... Args>
constexpr CheckedNumeric<typename ResultType<M, L, R, Args...>::type>
CheckMathOp(const L lhs, const R rhs, const Args... args) {
return CheckMathOp<M>(CheckMathOp<M>(lhs, rhs), args...);
}
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Add, +, +=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Sub, -, -=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Mul, *, *=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Div, /, /=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Mod, %, %=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Lsh, <<, <<=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Rsh, >>, >>=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, And, &, &=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Or, |, |=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Xor, ^, ^=)
BASE_NUMERIC_ARITHMETIC_VARIADIC(Checked, Check, Max)
BASE_NUMERIC_ARITHMETIC_VARIADIC(Checked, Check, Min)
// These are some extra StrictNumeric operators to support simple pointer
// arithmetic with our result types. Since wrapping on a pointer is always
// bad, we trigger the CHECK condition here.
template <typename L, typename R>
L* operator+(L* lhs, const StrictNumeric<R> rhs) {
uintptr_t result = CheckAdd(reinterpret_cast<uintptr_t>(lhs),
CheckMul(sizeof(L), static_cast<R>(rhs)))
.template ValueOrDie<uintptr_t>();
return reinterpret_cast<L*>(result);
}
template <typename L, typename R>
L* operator-(L* lhs, const StrictNumeric<R> rhs) {
uintptr_t result = CheckSub(reinterpret_cast<uintptr_t>(lhs),
CheckMul(sizeof(L), static_cast<R>(rhs)))
.template ValueOrDie<uintptr_t>();
return reinterpret_cast<L*>(result);
}
} // namespace internal
using internal::CheckedNumeric;
using internal::IsValidForType;
using internal::ValueOrDieForType;
using internal::ValueOrDefaultForType;
using internal::MakeCheckedNum;
using internal::CheckMax;
using internal::CheckMin;
using internal::CheckAdd;
using internal::CheckSub;
using internal::CheckMul;
using internal::CheckDiv;
using internal::CheckMod;
using internal::CheckLsh;
using internal::CheckRsh;
using internal::CheckAnd;
using internal::CheckOr;
using internal::CheckXor;
} // namespace base
#endif // BASE_NUMERICS_CHECKED_MATH_H_

View File

@@ -1,567 +0,0 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_CHECKED_MATH_IMPL_H_
#define BASE_NUMERICS_CHECKED_MATH_IMPL_H_
#include <stddef.h>
#include <stdint.h>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math_shared_impl.h"
namespace base {
namespace internal {
template <typename T>
constexpr bool CheckedAddImpl(T x, T y, T* result) {
static_assert(std::is_integral<T>::value, "Type must be integral");
// Since the value of x+y is undefined if we have a signed type, we compute
// it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
UnsignedDst ux = static_cast<UnsignedDst>(x);
UnsignedDst uy = static_cast<UnsignedDst>(y);
UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy);
*result = static_cast<T>(uresult);
// Addition is valid if the sign of (x + y) is equal to either that of x or
// that of y.
return (std::is_signed<T>::value)
? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0
: uresult >= uy; // Unsigned is either valid or underflow.
}
template <typename T, typename U, class Enable = void>
struct CheckedAddOp {};
template <typename T, typename U>
struct CheckedAddOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
// TODO(jschuh) Make this "constexpr if" once we're C++17.
if (CheckedAddFastOp<T, U>::is_supported)
return CheckedAddFastOp<T, U>::Do(x, y, result);
// Double the underlying type up to a full machine word.
using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type;
using Promotion =
typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value >
IntegerBitsPlusSign<intptr_t>::value),
typename BigEnoughPromotion<T, U>::type,
FastPromotion>::type;
// Fail if either operand is out of range for the promoted type.
// TODO(jschuh): This could be made to work for a broader range of values.
if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y))) {
return false;
}
Promotion presult = {};
bool is_valid = true;
if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
presult = static_cast<Promotion>(x) + static_cast<Promotion>(y);
} else {
is_valid = CheckedAddImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
*result = static_cast<V>(presult);
return is_valid && IsValueInRangeForNumericType<V>(presult);
}
};
template <typename T>
constexpr bool CheckedSubImpl(T x, T y, T* result) {
static_assert(std::is_integral<T>::value, "Type must be integral");
// Since the value of x+y is undefined if we have a signed type, we compute
// it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
UnsignedDst ux = static_cast<UnsignedDst>(x);
UnsignedDst uy = static_cast<UnsignedDst>(y);
UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy);
*result = static_cast<T>(uresult);
// Subtraction is valid if either x and y have same sign, or (x-y) and x have
// the same sign.
return (std::is_signed<T>::value)
? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0
: x >= y;
}
template <typename T, typename U, class Enable = void>
struct CheckedSubOp {};
template <typename T, typename U>
struct CheckedSubOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
// TODO(jschuh) Make this "constexpr if" once we're C++17.
if (CheckedSubFastOp<T, U>::is_supported)
return CheckedSubFastOp<T, U>::Do(x, y, result);
// Double the underlying type up to a full machine word.
using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type;
using Promotion =
typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value >
IntegerBitsPlusSign<intptr_t>::value),
typename BigEnoughPromotion<T, U>::type,
FastPromotion>::type;
// Fail if either operand is out of range for the promoted type.
// TODO(jschuh): This could be made to work for a broader range of values.
if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y))) {
return false;
}
Promotion presult = {};
bool is_valid = true;
if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
presult = static_cast<Promotion>(x) - static_cast<Promotion>(y);
} else {
is_valid = CheckedSubImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
*result = static_cast<V>(presult);
return is_valid && IsValueInRangeForNumericType<V>(presult);
}
};
template <typename T>
constexpr bool CheckedMulImpl(T x, T y, T* result) {
static_assert(std::is_integral<T>::value, "Type must be integral");
// Since the value of x*y is potentially undefined if we have a signed type,
// we compute it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
const UnsignedDst ux = SafeUnsignedAbs(x);
const UnsignedDst uy = SafeUnsignedAbs(y);
UnsignedDst uresult = static_cast<UnsignedDst>(ux * uy);
const bool is_negative =
std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0;
*result = is_negative ? 0 - uresult : uresult;
// We have a fast out for unsigned identity or zero on the second operand.
// After that it's an unsigned overflow check on the absolute value, with
// a +1 bound for a negative result.
return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) ||
ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy;
}
template <typename T, typename U, class Enable = void>
struct CheckedMulOp {};
template <typename T, typename U>
struct CheckedMulOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
// TODO(jschuh) Make this "constexpr if" once we're C++17.
if (CheckedMulFastOp<T, U>::is_supported)
return CheckedMulFastOp<T, U>::Do(x, y, result);
using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
// Verify the destination type can hold the result (always true for 0).
if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y)) &&
x && y)) {
return false;
}
Promotion presult = {};
bool is_valid = true;
if (CheckedMulFastOp<Promotion, Promotion>::is_supported) {
// The fast op may be available with the promoted type.
is_valid = CheckedMulFastOp<Promotion, Promotion>::Do(x, y, &presult);
} else if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
} else {
is_valid = CheckedMulImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
*result = static_cast<V>(presult);
return is_valid && IsValueInRangeForNumericType<V>(presult);
}
};
// Division just requires a check for a zero denominator or an invalid negation
// on signed min/-1.
template <typename T, typename U, class Enable = void>
struct CheckedDivOp {};
template <typename T, typename U>
struct CheckedDivOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
if (BASE_NUMERICS_UNLIKELY(!y))
return false;
// The overflow check can be compiled away if we don't have the exact
// combination of types needed to trigger this case.
using Promotion = typename BigEnoughPromotion<T, U>::type;
if (BASE_NUMERICS_UNLIKELY(
(std::is_signed<T>::value && std::is_signed<U>::value &&
IsTypeInRangeForNumericType<T, Promotion>::value &&
static_cast<Promotion>(x) ==
std::numeric_limits<Promotion>::lowest() &&
y == static_cast<U>(-1)))) {
return false;
}
// This branch always compiles away if the above branch wasn't removed.
if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y)) &&
x)) {
return false;
}
Promotion presult = Promotion(x) / Promotion(y);
*result = static_cast<V>(presult);
return IsValueInRangeForNumericType<V>(presult);
}
};
template <typename T, typename U, class Enable = void>
struct CheckedModOp {};
template <typename T, typename U>
struct CheckedModOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
using Promotion = typename BigEnoughPromotion<T, U>::type;
if (BASE_NUMERICS_LIKELY(y)) {
Promotion presult = static_cast<Promotion>(x) % static_cast<Promotion>(y);
*result = static_cast<Promotion>(presult);
return IsValueInRangeForNumericType<V>(presult);
}
return false;
}
};
template <typename T, typename U, class Enable = void>
struct CheckedLshOp {};
// Left shift. Shifts less than 0 or greater than or equal to the number
// of bits in the promoted type are undefined. Shifts of negative values
// are undefined. Otherwise it is defined when the result fits.
template <typename T, typename U>
struct CheckedLshOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = T;
template <typename V>
static constexpr bool Do(T x, U shift, V* result) {
// Disallow negative numbers and verify the shift is in bounds.
if (BASE_NUMERICS_LIKELY(!IsValueNegative(x) &&
as_unsigned(shift) <
as_unsigned(std::numeric_limits<T>::digits))) {
// Shift as unsigned to avoid undefined behavior.
*result = static_cast<V>(as_unsigned(x) << shift);
// If the shift can be reversed, we know it was valid.
return *result >> shift == x;
}
// Handle the legal corner-case of a full-width signed shift of zero.
return std::is_signed<T>::value && !x &&
as_unsigned(shift) == as_unsigned(std::numeric_limits<T>::digits);
}
};
template <typename T, typename U, class Enable = void>
struct CheckedRshOp {};
// Right shift. Shifts less than 0 or greater than or equal to the number
// of bits in the promoted type are undefined. Otherwise, it is always defined,
// but a right shift of a negative value is implementation-dependent.
template <typename T, typename U>
struct CheckedRshOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = T;
template <typename V>
static bool Do(T x, U shift, V* result) {
// Use the type conversion push negative values out of range.
if (BASE_NUMERICS_LIKELY(as_unsigned(shift) <
IntegerBitsPlusSign<T>::value)) {
T tmp = x >> shift;
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
return false;
}
};
template <typename T, typename U, class Enable = void>
struct CheckedAndOp {};
// For simplicity we support only unsigned integer results.
template <typename T, typename U>
struct CheckedAndOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y);
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
};
template <typename T, typename U, class Enable = void>
struct CheckedOrOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
struct CheckedOrOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y);
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
};
template <typename T, typename U, class Enable = void>
struct CheckedXorOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
struct CheckedXorOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y);
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
};
// Max doesn't really need to be implemented this way because it can't fail,
// but it makes the code much cleaner to use the MathOp wrappers.
template <typename T, typename U, class Enable = void>
struct CheckedMaxOp {};
template <typename T, typename U>
struct CheckedMaxOp<
T,
U,
typename std::enable_if<std::is_arithmetic<T>::value &&
std::is_arithmetic<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
result_type tmp = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x)
: static_cast<result_type>(y);
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
};
// Min doesn't really need to be implemented this way because it can't fail,
// but it makes the code much cleaner to use the MathOp wrappers.
template <typename T, typename U, class Enable = void>
struct CheckedMinOp {};
template <typename T, typename U>
struct CheckedMinOp<
T,
U,
typename std::enable_if<std::is_arithmetic<T>::value &&
std::is_arithmetic<U>::value>::type> {
using result_type = typename LowestValuePromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
result_type tmp = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x)
: static_cast<result_type>(y);
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
};
// This is just boilerplate that wraps the standard floating point arithmetic.
// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
template <typename T, typename U> \
struct Checked##NAME##Op< \
T, U, \
typename std::enable_if<std::is_floating_point<T>::value || \
std::is_floating_point<U>::value>::type> { \
using result_type = typename MaxExponentPromotion<T, U>::type; \
template <typename V> \
static constexpr bool Do(T x, U y, V* result) { \
using Promotion = typename MaxExponentPromotion<T, U>::type; \
Promotion presult = x OP y; \
*result = static_cast<V>(presult); \
return IsValueInRangeForNumericType<V>(presult); \
} \
};
BASE_FLOAT_ARITHMETIC_OPS(Add, +)
BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
BASE_FLOAT_ARITHMETIC_OPS(Div, /)
#undef BASE_FLOAT_ARITHMETIC_OPS
// Floats carry around their validity state with them, but integers do not. So,
// we wrap the underlying value in a specialization in order to hide that detail
// and expose an interface via accessors.
enum NumericRepresentation {
NUMERIC_INTEGER,
NUMERIC_FLOATING,
NUMERIC_UNKNOWN
};
template <typename NumericType>
struct GetNumericRepresentation {
static const NumericRepresentation value =
std::is_integral<NumericType>::value
? NUMERIC_INTEGER
: (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING
: NUMERIC_UNKNOWN);
};
template <typename T,
NumericRepresentation type = GetNumericRepresentation<T>::value>
class CheckedNumericState {};
// Integrals require quite a bit of additional housekeeping to manage state.
template <typename T>
class CheckedNumericState<T, NUMERIC_INTEGER> {
private:
// is_valid_ precedes value_ because member intializers in the constructors
// are evaluated in field order, and is_valid_ must be read when initializing
// value_.
bool is_valid_;
T value_;
// Ensures that a type conversion does not trigger undefined behavior.
template <typename Src>
static constexpr T WellDefinedConversionOrZero(const Src value,
const bool is_valid) {
using SrcType = typename internal::UnderlyingType<Src>::type;
return (std::is_integral<SrcType>::value || is_valid)
? static_cast<T>(value)
: static_cast<T>(0);
}
public:
template <typename Src, NumericRepresentation type>
friend class CheckedNumericState;
constexpr CheckedNumericState() : is_valid_(true), value_(0) {}
template <typename Src>
constexpr CheckedNumericState(Src value, bool is_valid)
: is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)),
value_(WellDefinedConversionOrZero(value, is_valid_)) {
static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
}
// Copy constructor.
template <typename Src>
constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
: is_valid_(rhs.IsValid()),
value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {}
template <typename Src>
constexpr explicit CheckedNumericState(Src value)
: is_valid_(IsValueInRangeForNumericType<T>(value)),
value_(WellDefinedConversionOrZero(value, is_valid_)) {}
constexpr bool is_valid() const { return is_valid_; }
constexpr T value() const { return value_; }
};
// Floating points maintain their own validity, but need translation wrappers.
template <typename T>
class CheckedNumericState<T, NUMERIC_FLOATING> {
private:
T value_;
// Ensures that a type conversion does not trigger undefined behavior.
template <typename Src>
static constexpr T WellDefinedConversionOrNaN(const Src value,
const bool is_valid) {
using SrcType = typename internal::UnderlyingType<Src>::type;
return (StaticDstRangeRelationToSrcRange<T, SrcType>::value ==
NUMERIC_RANGE_CONTAINED ||
is_valid)
? static_cast<T>(value)
: std::numeric_limits<T>::quiet_NaN();
}
public:
template <typename Src, NumericRepresentation type>
friend class CheckedNumericState;
constexpr CheckedNumericState() : value_(0.0) {}
template <typename Src>
constexpr CheckedNumericState(Src value, bool is_valid)
: value_(WellDefinedConversionOrNaN(value, is_valid)) {}
template <typename Src>
constexpr explicit CheckedNumericState(Src value)
: value_(WellDefinedConversionOrNaN(
value,
IsValueInRangeForNumericType<T>(value))) {}
// Copy constructor.
template <typename Src>
constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
: value_(WellDefinedConversionOrNaN(
rhs.value(),
rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {}
constexpr bool is_valid() const {
// Written this way because std::isfinite is not reliably constexpr.
return MustTreatAsConstexpr(value_)
? value_ <= std::numeric_limits<T>::max() &&
value_ >= std::numeric_limits<T>::lowest()
: std::isfinite(value_);
}
constexpr T value() const { return value_; }
};
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_CHECKED_MATH_IMPL_H_

View File

@@ -1,264 +0,0 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_CLAMPED_MATH_H_
#define BASE_NUMERICS_CLAMPED_MATH_H_
#include <stddef.h>
#include <limits>
#include <type_traits>
#include "base/numerics/clamped_math_impl.h"
namespace base {
namespace internal {
template <typename T>
class ClampedNumeric {
static_assert(std::is_arithmetic<T>::value,
"ClampedNumeric<T>: T must be a numeric type.");
public:
using type = T;
constexpr ClampedNumeric() : value_(0) {}
// Copy constructor.
template <typename Src>
constexpr ClampedNumeric(const ClampedNumeric<Src>& rhs)
: value_(saturated_cast<T>(rhs.value_)) {}
template <typename Src>
friend class ClampedNumeric;
// This is not an explicit constructor because we implicitly upgrade regular
// numerics to ClampedNumerics to make them easier to use.
template <typename Src>
constexpr ClampedNumeric(Src value) // NOLINT(runtime/explicit)
: value_(saturated_cast<T>(value)) {
static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
}
// This is not an explicit constructor because we want a seamless conversion
// from StrictNumeric types.
template <typename Src>
constexpr ClampedNumeric(
StrictNumeric<Src> value) // NOLINT(runtime/explicit)
: value_(saturated_cast<T>(static_cast<Src>(value))) {}
// Returns a ClampedNumeric of the specified type, cast from the current
// ClampedNumeric, and saturated to the destination type.
template <typename Dst>
constexpr ClampedNumeric<typename UnderlyingType<Dst>::type> Cast() const {
return *this;
}
// Prototypes for the supported arithmetic operator overloads.
template <typename Src>
constexpr ClampedNumeric& operator+=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator-=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator*=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator/=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator%=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator<<=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator>>=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator&=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator|=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator^=(const Src rhs);
constexpr ClampedNumeric operator-() const {
// The negation of two's complement int min is int min, so that's the
// only overflow case where we will saturate.
return ClampedNumeric<T>(SaturatedNegWrapper(value_));
}
constexpr ClampedNumeric operator~() const {
return ClampedNumeric<decltype(InvertWrapper(T()))>(InvertWrapper(value_));
}
constexpr ClampedNumeric Abs() const {
// The negation of two's complement int min is int min, so that's the
// only overflow case where we will saturate.
return ClampedNumeric<T>(SaturatedAbsWrapper(value_));
}
template <typename U>
constexpr ClampedNumeric<typename MathWrapper<ClampedMaxOp, T, U>::type> Max(
const U rhs) const {
using result_type = typename MathWrapper<ClampedMaxOp, T, U>::type;
return ClampedNumeric<result_type>(
ClampedMaxOp<T, U>::Do(value_, Wrapper<U>::value(rhs)));
}
template <typename U>
constexpr ClampedNumeric<typename MathWrapper<ClampedMinOp, T, U>::type> Min(
const U rhs) const {
using result_type = typename MathWrapper<ClampedMinOp, T, U>::type;
return ClampedNumeric<result_type>(
ClampedMinOp<T, U>::Do(value_, Wrapper<U>::value(rhs)));
}
// This function is available only for integral types. It returns an unsigned
// integer of the same width as the source type, containing the absolute value
// of the source, and properly handling signed min.
constexpr ClampedNumeric<typename UnsignedOrFloatForSize<T>::type>
UnsignedAbs() const {
return ClampedNumeric<typename UnsignedOrFloatForSize<T>::type>(
SafeUnsignedAbs(value_));
}
constexpr ClampedNumeric& operator++() {
*this += 1;
return *this;
}
constexpr ClampedNumeric operator++(int) {
ClampedNumeric value = *this;
*this += 1;
return value;
}
constexpr ClampedNumeric& operator--() {
*this -= 1;
return *this;
}
constexpr ClampedNumeric operator--(int) {
ClampedNumeric value = *this;
*this -= 1;
return value;
}
// These perform the actual math operations on the ClampedNumerics.
// Binary arithmetic operations.
template <template <typename, typename, typename> class M,
typename L,
typename R>
static constexpr ClampedNumeric MathOp(const L lhs, const R rhs) {
using Math = typename MathWrapper<M, L, R>::math;
return ClampedNumeric<T>(
Math::template Do<T>(Wrapper<L>::value(lhs), Wrapper<R>::value(rhs)));
}
// Assignment arithmetic operations.
template <template <typename, typename, typename> class M, typename R>
constexpr ClampedNumeric& MathOp(const R rhs) {
using Math = typename MathWrapper<M, T, R>::math;
*this =
ClampedNumeric<T>(Math::template Do<T>(value_, Wrapper<R>::value(rhs)));
return *this;
}
template <typename Dst>
constexpr operator Dst() const {
return saturated_cast<typename ArithmeticOrUnderlyingEnum<Dst>::type>(
value_);
}
// This method extracts the raw integer value without saturating it to the
// destination type as the conversion operator does. This is useful when
// e.g. assigning to an auto type or passing as a deduced template parameter.
constexpr T RawValue() const { return value_; }
private:
T value_;
// These wrappers allow us to handle state the same way for both
// ClampedNumeric and POD arithmetic types.
template <typename Src>
struct Wrapper {
static constexpr Src value(Src value) {
return static_cast<typename UnderlyingType<Src>::type>(value);
}
};
};
// Convience wrapper to return a new ClampedNumeric from the provided arithmetic
// or ClampedNumericType.
template <typename T>
constexpr ClampedNumeric<typename UnderlyingType<T>::type> MakeClampedNum(
const T value) {
return value;
}
#if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS
// Overload the ostream output operator to make logging work nicely.
template <typename T>
std::ostream& operator<<(std::ostream& os, const ClampedNumeric<T>& value) {
os << static_cast<T>(value);
return os;
}
#endif
// These implement the variadic wrapper for the math operations.
template <template <typename, typename, typename> class M,
typename L,
typename R>
constexpr ClampedNumeric<typename MathWrapper<M, L, R>::type> ClampMathOp(
const L lhs,
const R rhs) {
using Math = typename MathWrapper<M, L, R>::math;
return ClampedNumeric<typename Math::result_type>::template MathOp<M>(lhs,
rhs);
}
// General purpose wrapper template for arithmetic operations.
template <template <typename, typename, typename> class M,
typename L,
typename R,
typename... Args>
constexpr ClampedNumeric<typename ResultType<M, L, R, Args...>::type>
ClampMathOp(const L lhs, const R rhs, const Args... args) {
return ClampMathOp<M>(ClampMathOp<M>(lhs, rhs), args...);
}
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Add, +, +=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Sub, -, -=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Mul, *, *=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Div, /, /=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Mod, %, %=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Lsh, <<, <<=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Rsh, >>, >>=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, And, &, &=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Or, |, |=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Xor, ^, ^=)
BASE_NUMERIC_ARITHMETIC_VARIADIC(Clamped, Clamp, Max)
BASE_NUMERIC_ARITHMETIC_VARIADIC(Clamped, Clamp, Min)
BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsLess, <)
BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsLessOrEqual, <=)
BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsGreater, >)
BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsGreaterOrEqual, >=)
BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsEqual, ==)
BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsNotEqual, !=)
} // namespace internal
using internal::ClampedNumeric;
using internal::MakeClampedNum;
using internal::ClampMax;
using internal::ClampMin;
using internal::ClampAdd;
using internal::ClampSub;
using internal::ClampMul;
using internal::ClampDiv;
using internal::ClampMod;
using internal::ClampLsh;
using internal::ClampRsh;
using internal::ClampAnd;
using internal::ClampOr;
using internal::ClampXor;
} // namespace base
#endif // BASE_NUMERICS_CLAMPED_MATH_H_

View File

@@ -1,341 +0,0 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
#define BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
#include <stddef.h>
#include <stdint.h>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <type_traits>
#include "base/numerics/checked_math.h"
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math_shared_impl.h"
namespace base {
namespace internal {
template <typename T,
typename std::enable_if<std::is_integral<T>::value &&
std::is_signed<T>::value>::type* = nullptr>
constexpr T SaturatedNegWrapper(T value) {
return MustTreatAsConstexpr(value) || !ClampedNegFastOp<T>::is_supported
? (NegateWrapper(value) != std::numeric_limits<T>::lowest()
? NegateWrapper(value)
: std::numeric_limits<T>::max())
: ClampedNegFastOp<T>::Do(value);
}
template <typename T,
typename std::enable_if<std::is_integral<T>::value &&
!std::is_signed<T>::value>::type* = nullptr>
constexpr T SaturatedNegWrapper(T value) {
return T(0);
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
constexpr T SaturatedNegWrapper(T value) {
return -value;
}
template <typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
constexpr T SaturatedAbsWrapper(T value) {
// The calculation below is a static identity for unsigned types, but for
// signed integer types it provides a non-branching, saturated absolute value.
// This works because SafeUnsignedAbs() returns an unsigned type, which can
// represent the absolute value of all negative numbers of an equal-width
// integer type. The call to IsValueNegative() then detects overflow in the
// special case of numeric_limits<T>::min(), by evaluating the bit pattern as
// a signed integer value. If it is the overflow case, we end up subtracting
// one from the unsigned result, thus saturating to numeric_limits<T>::max().
return static_cast<T>(SafeUnsignedAbs(value) -
IsValueNegative<T>(SafeUnsignedAbs(value)));
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
constexpr T SaturatedAbsWrapper(T value) {
return value < 0 ? -value : value;
}
template <typename T, typename U, class Enable = void>
struct ClampedAddOp {};
template <typename T, typename U>
struct ClampedAddOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
if (ClampedAddFastOp<T, U>::is_supported)
return ClampedAddFastOp<T, U>::template Do<V>(x, y);
static_assert(std::is_same<V, result_type>::value ||
IsTypeInRangeForNumericType<U, V>::value,
"The saturation result cannot be determined from the "
"provided types.");
const V saturated = CommonMaxOrMin<V>(IsValueNegative(y));
V result = {};
return BASE_NUMERICS_LIKELY((CheckedAddOp<T, U>::Do(x, y, &result)))
? result
: saturated;
}
};
template <typename T, typename U, class Enable = void>
struct ClampedSubOp {};
template <typename T, typename U>
struct ClampedSubOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
// TODO(jschuh) Make this "constexpr if" once we're C++17.
if (ClampedSubFastOp<T, U>::is_supported)
return ClampedSubFastOp<T, U>::template Do<V>(x, y);
static_assert(std::is_same<V, result_type>::value ||
IsTypeInRangeForNumericType<U, V>::value,
"The saturation result cannot be determined from the "
"provided types.");
const V saturated = CommonMaxOrMin<V>(!IsValueNegative(y));
V result = {};
return BASE_NUMERICS_LIKELY((CheckedSubOp<T, U>::Do(x, y, &result)))
? result
: saturated;
}
};
template <typename T, typename U, class Enable = void>
struct ClampedMulOp {};
template <typename T, typename U>
struct ClampedMulOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
// TODO(jschuh) Make this "constexpr if" once we're C++17.
if (ClampedMulFastOp<T, U>::is_supported)
return ClampedMulFastOp<T, U>::template Do<V>(x, y);
V result = {};
const V saturated =
CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y));
return BASE_NUMERICS_LIKELY((CheckedMulOp<T, U>::Do(x, y, &result)))
? result
: saturated;
}
};
template <typename T, typename U, class Enable = void>
struct ClampedDivOp {};
template <typename T, typename U>
struct ClampedDivOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
V result = {};
if (BASE_NUMERICS_LIKELY((CheckedDivOp<T, U>::Do(x, y, &result))))
return result;
// Saturation goes to max, min, or NaN (if x is zero).
return x ? CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y))
: SaturationDefaultLimits<V>::NaN();
}
};
template <typename T, typename U, class Enable = void>
struct ClampedModOp {};
template <typename T, typename U>
struct ClampedModOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
V result = {};
return BASE_NUMERICS_LIKELY((CheckedModOp<T, U>::Do(x, y, &result)))
? result
: x;
}
};
template <typename T, typename U, class Enable = void>
struct ClampedLshOp {};
// Left shift. Non-zero values saturate in the direction of the sign. A zero
// shifted by any value always results in zero.
template <typename T, typename U>
struct ClampedLshOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = T;
template <typename V = result_type>
static constexpr V Do(T x, U shift) {
static_assert(!std::is_signed<U>::value, "Shift value must be unsigned.");
if (BASE_NUMERICS_LIKELY(shift < std::numeric_limits<T>::digits)) {
// Shift as unsigned to avoid undefined behavior.
V result = static_cast<V>(as_unsigned(x) << shift);
// If the shift can be reversed, we know it was valid.
if (BASE_NUMERICS_LIKELY(result >> shift == x))
return result;
}
return x ? CommonMaxOrMin<V>(IsValueNegative(x)) : 0;
}
};
template <typename T, typename U, class Enable = void>
struct ClampedRshOp {};
// Right shift. Negative values saturate to -1. Positive or 0 saturates to 0.
template <typename T, typename U>
struct ClampedRshOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = T;
template <typename V = result_type>
static constexpr V Do(T x, U shift) {
static_assert(!std::is_signed<U>::value, "Shift value must be unsigned.");
// Signed right shift is odd, because it saturates to -1 or 0.
const V saturated = as_unsigned(V(0)) - IsValueNegative(x);
return BASE_NUMERICS_LIKELY(shift < IntegerBitsPlusSign<T>::value)
? saturated_cast<V>(x >> shift)
: saturated;
}
};
template <typename T, typename U, class Enable = void>
struct ClampedAndOp {};
template <typename T, typename U>
struct ClampedAndOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V>
static constexpr V Do(T x, U y) {
return static_cast<result_type>(x) & static_cast<result_type>(y);
}
};
template <typename T, typename U, class Enable = void>
struct ClampedOrOp {};
// For simplicity we promote to unsigned integers.
template <typename T, typename U>
struct ClampedOrOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V>
static constexpr V Do(T x, U y) {
return static_cast<result_type>(x) | static_cast<result_type>(y);
}
};
template <typename T, typename U, class Enable = void>
struct ClampedXorOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
struct ClampedXorOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V>
static constexpr V Do(T x, U y) {
return static_cast<result_type>(x) ^ static_cast<result_type>(y);
}
};
template <typename T, typename U, class Enable = void>
struct ClampedMaxOp {};
template <typename T, typename U>
struct ClampedMaxOp<
T,
U,
typename std::enable_if<std::is_arithmetic<T>::value &&
std::is_arithmetic<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
return IsGreater<T, U>::Test(x, y) ? saturated_cast<V>(x)
: saturated_cast<V>(y);
}
};
template <typename T, typename U, class Enable = void>
struct ClampedMinOp {};
template <typename T, typename U>
struct ClampedMinOp<
T,
U,
typename std::enable_if<std::is_arithmetic<T>::value &&
std::is_arithmetic<U>::value>::type> {
using result_type = typename LowestValuePromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
return IsLess<T, U>::Test(x, y) ? saturated_cast<V>(x)
: saturated_cast<V>(y);
}
};
// This is just boilerplate that wraps the standard floating point arithmetic.
// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
template <typename T, typename U> \
struct Clamped##NAME##Op< \
T, U, \
typename std::enable_if<std::is_floating_point<T>::value || \
std::is_floating_point<U>::value>::type> { \
using result_type = typename MaxExponentPromotion<T, U>::type; \
template <typename V = result_type> \
static constexpr V Do(T x, U y) { \
return saturated_cast<V>(x OP y); \
} \
};
BASE_FLOAT_ARITHMETIC_OPS(Add, +)
BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
BASE_FLOAT_ARITHMETIC_OPS(Div, /)
#undef BASE_FLOAT_ARITHMETIC_OPS
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_CLAMPED_MATH_IMPL_H_

View File

@@ -1,19 +0,0 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_MATH_CONSTANTS_H_
#define BASE_NUMERICS_MATH_CONSTANTS_H_
namespace base {
constexpr double kPiDouble = 3.14159265358979323846;
constexpr float kPiFloat = 3.14159265358979323846f;
// The mean acceleration due to gravity on Earth in m/s^2.
constexpr double kMeanGravityDouble = 9.80665;
constexpr float kMeanGravityFloat = 9.80665f;
} // namespace base
#endif // BASE_NUMERICS_MATH_CONSTANTS_H_

View File

@@ -1,27 +0,0 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_RANGES_H_
#define BASE_NUMERICS_RANGES_H_
#include <algorithm>
#include <cmath>
namespace base {
// To be replaced with std::clamp() from C++17, someday.
template <class T>
constexpr const T& ClampToRange(const T& value, const T& min, const T& max) {
return std::min(std::max(value, min), max);
}
template <typename T>
constexpr bool IsApproximatelyEqual(T lhs, T rhs, T tolerance) {
static_assert(std::is_arithmetic<T>::value, "Argument must be arithmetic");
return std::abs(rhs - lhs) <= tolerance;
}
} // namespace base
#endif // BASE_NUMERICS_RANGES_H_

View File

@@ -1,358 +0,0 @@
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_H_
#define BASE_NUMERICS_SAFE_CONVERSIONS_H_
#include <stddef.h>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions_impl.h"
#if !defined(__native_client__) && (defined(__ARMEL__) || defined(__arch64__))
#include "base/numerics/safe_conversions_arm_impl.h"
#define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (1)
#else
#define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (0)
#endif
#if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS
#include <ostream>
#endif
namespace base {
namespace internal {
#if !BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
template <typename Dst, typename Src>
struct SaturateFastAsmOp {
static const bool is_supported = false;
static constexpr Dst Do(Src) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<Dst>();
}
};
#endif // BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
#undef BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
// The following special case a few specific integer conversions where we can
// eke out better performance than range checking.
template <typename Dst, typename Src, typename Enable = void>
struct IsValueInRangeFastOp {
static const bool is_supported = false;
static constexpr bool Do(Src value) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
// Signed to signed range comparison.
template <typename Dst, typename Src>
struct IsValueInRangeFastOp<
Dst,
Src,
typename std::enable_if<
std::is_integral<Dst>::value && std::is_integral<Src>::value &&
std::is_signed<Dst>::value && std::is_signed<Src>::value &&
!IsTypeInRangeForNumericType<Dst, Src>::value>::type> {
static const bool is_supported = true;
static constexpr bool Do(Src value) {
// Just downcast to the smaller type, sign extend it back to the original
// type, and then see if it matches the original value.
return value == static_cast<Dst>(value);
}
};
// Signed to unsigned range comparison.
template <typename Dst, typename Src>
struct IsValueInRangeFastOp<
Dst,
Src,
typename std::enable_if<
std::is_integral<Dst>::value && std::is_integral<Src>::value &&
!std::is_signed<Dst>::value && std::is_signed<Src>::value &&
!IsTypeInRangeForNumericType<Dst, Src>::value>::type> {
static const bool is_supported = true;
static constexpr bool Do(Src value) {
// We cast a signed as unsigned to overflow negative values to the top,
// then compare against whichever maximum is smaller, as our upper bound.
return as_unsigned(value) <= as_unsigned(CommonMax<Src, Dst>());
}
};
// Convenience function that returns true if the supplied value is in range
// for the destination type.
template <typename Dst, typename Src>
constexpr bool IsValueInRangeForNumericType(Src value) {
using SrcType = typename internal::UnderlyingType<Src>::type;
return internal::IsValueInRangeFastOp<Dst, SrcType>::is_supported
? internal::IsValueInRangeFastOp<Dst, SrcType>::Do(
static_cast<SrcType>(value))
: internal::DstRangeRelationToSrcRange<Dst>(
static_cast<SrcType>(value))
.IsValid();
}
// checked_cast<> is analogous to static_cast<> for numeric types,
// except that it CHECKs that the specified numeric conversion will not
// overflow or underflow. NaN source will always trigger a CHECK.
template <typename Dst,
class CheckHandler = internal::CheckOnFailure,
typename Src>
constexpr Dst checked_cast(Src value) {
// This throws a compile-time error on evaluating the constexpr if it can be
// determined at compile-time as failing, otherwise it will CHECK at runtime.
using SrcType = typename internal::UnderlyingType<Src>::type;
return BASE_NUMERICS_LIKELY((IsValueInRangeForNumericType<Dst>(value)))
? static_cast<Dst>(static_cast<SrcType>(value))
: CheckHandler::template HandleFailure<Dst>();
}
// Default boundaries for integral/float: max/infinity, lowest/-infinity, 0/NaN.
// You may provide your own limits (e.g. to saturated_cast) so long as you
// implement all of the static constexpr member functions in the class below.
template <typename T>
struct SaturationDefaultLimits : public std::numeric_limits<T> {
static constexpr T NaN() {
return std::numeric_limits<T>::has_quiet_NaN
? std::numeric_limits<T>::quiet_NaN()
: T();
}
using std::numeric_limits<T>::max;
static constexpr T Overflow() {
return std::numeric_limits<T>::has_infinity
? std::numeric_limits<T>::infinity()
: std::numeric_limits<T>::max();
}
using std::numeric_limits<T>::lowest;
static constexpr T Underflow() {
return std::numeric_limits<T>::has_infinity
? std::numeric_limits<T>::infinity() * -1
: std::numeric_limits<T>::lowest();
}
};
template <typename Dst, template <typename> class S, typename Src>
constexpr Dst saturated_cast_impl(Src value, RangeCheck constraint) {
// For some reason clang generates much better code when the branch is
// structured exactly this way, rather than a sequence of checks.
return !constraint.IsOverflowFlagSet()
? (!constraint.IsUnderflowFlagSet() ? static_cast<Dst>(value)
: S<Dst>::Underflow())
// Skip this check for integral Src, which cannot be NaN.
: (std::is_integral<Src>::value || !constraint.IsUnderflowFlagSet()
? S<Dst>::Overflow()
: S<Dst>::NaN());
}
// We can reduce the number of conditions and get slightly better performance
// for normal signed and unsigned integer ranges. And in the specific case of
// Arm, we can use the optimized saturation instructions.
template <typename Dst, typename Src, typename Enable = void>
struct SaturateFastOp {
static const bool is_supported = false;
static constexpr Dst Do(Src value) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<Dst>();
}
};
template <typename Dst, typename Src>
struct SaturateFastOp<
Dst,
Src,
typename std::enable_if<std::is_integral<Src>::value &&
std::is_integral<Dst>::value &&
SaturateFastAsmOp<Dst, Src>::is_supported>::type> {
static const bool is_supported = true;
static Dst Do(Src value) { return SaturateFastAsmOp<Dst, Src>::Do(value); }
};
template <typename Dst, typename Src>
struct SaturateFastOp<
Dst,
Src,
typename std::enable_if<std::is_integral<Src>::value &&
std::is_integral<Dst>::value &&
!SaturateFastAsmOp<Dst, Src>::is_supported>::type> {
static const bool is_supported = true;
static Dst Do(Src value) {
// The exact order of the following is structured to hit the correct
// optimization heuristics across compilers. Do not change without
// checking the emitted code.
Dst saturated = CommonMaxOrMin<Dst, Src>(
IsMaxInRangeForNumericType<Dst, Src>() ||
(!IsMinInRangeForNumericType<Dst, Src>() && IsValueNegative(value)));
return BASE_NUMERICS_LIKELY(IsValueInRangeForNumericType<Dst>(value))
? static_cast<Dst>(value)
: saturated;
}
};
// saturated_cast<> is analogous to static_cast<> for numeric types, except
// that the specified numeric conversion will saturate by default rather than
// overflow or underflow, and NaN assignment to an integral will return 0.
// All boundary condition behaviors can be overriden with a custom handler.
template <typename Dst,
template <typename> class SaturationHandler = SaturationDefaultLimits,
typename Src>
constexpr Dst saturated_cast(Src value) {
using SrcType = typename UnderlyingType<Src>::type;
return !IsCompileTimeConstant(value) &&
SaturateFastOp<Dst, SrcType>::is_supported &&
std::is_same<SaturationHandler<Dst>,
SaturationDefaultLimits<Dst>>::value
? SaturateFastOp<Dst, SrcType>::Do(static_cast<SrcType>(value))
: saturated_cast_impl<Dst, SaturationHandler, SrcType>(
static_cast<SrcType>(value),
DstRangeRelationToSrcRange<Dst, SaturationHandler, SrcType>(
static_cast<SrcType>(value)));
}
// strict_cast<> is analogous to static_cast<> for numeric types, except that
// it will cause a compile failure if the destination type is not large enough
// to contain any value in the source type. It performs no runtime checking.
template <typename Dst, typename Src>
constexpr Dst strict_cast(Src value) {
using SrcType = typename UnderlyingType<Src>::type;
static_assert(UnderlyingType<Src>::is_numeric, "Argument must be numeric.");
static_assert(std::is_arithmetic<Dst>::value, "Result must be numeric.");
// If you got here from a compiler error, it's because you tried to assign
// from a source type to a destination type that has insufficient range.
// The solution may be to change the destination type you're assigning to,
// and use one large enough to represent the source.
// Alternatively, you may be better served with the checked_cast<> or
// saturated_cast<> template functions for your particular use case.
static_assert(StaticDstRangeRelationToSrcRange<Dst, SrcType>::value ==
NUMERIC_RANGE_CONTAINED,
"The source type is out of range for the destination type. "
"Please see strict_cast<> comments for more information.");
return static_cast<Dst>(static_cast<SrcType>(value));
}
// Some wrappers to statically check that a type is in range.
template <typename Dst, typename Src, class Enable = void>
struct IsNumericRangeContained {
static const bool value = false;
};
template <typename Dst, typename Src>
struct IsNumericRangeContained<
Dst,
Src,
typename std::enable_if<ArithmeticOrUnderlyingEnum<Dst>::value &&
ArithmeticOrUnderlyingEnum<Src>::value>::type> {
static const bool value = StaticDstRangeRelationToSrcRange<Dst, Src>::value ==
NUMERIC_RANGE_CONTAINED;
};
// StrictNumeric implements compile time range checking between numeric types by
// wrapping assignment operations in a strict_cast. This class is intended to be
// used for function arguments and return types, to ensure the destination type
// can always contain the source type. This is essentially the same as enforcing
// -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied
// incrementally at API boundaries, making it easier to convert code so that it
// compiles cleanly with truncation warnings enabled.
// This template should introduce no runtime overhead, but it also provides no
// runtime checking of any of the associated mathematical operations. Use
// CheckedNumeric for runtime range checks of the actual value being assigned.
template <typename T>
class StrictNumeric {
public:
using type = T;
constexpr StrictNumeric() : value_(0) {}
// Copy constructor.
template <typename Src>
constexpr StrictNumeric(const StrictNumeric<Src>& rhs)
: value_(strict_cast<T>(rhs.value_)) {}
// This is not an explicit constructor because we implicitly upgrade regular
// numerics to StrictNumerics to make them easier to use.
template <typename Src>
constexpr StrictNumeric(Src value) // NOLINT(runtime/explicit)
: value_(strict_cast<T>(value)) {}
// If you got here from a compiler error, it's because you tried to assign
// from a source type to a destination type that has insufficient range.
// The solution may be to change the destination type you're assigning to,
// and use one large enough to represent the source.
// If you're assigning from a CheckedNumeric<> class, you may be able to use
// the AssignIfValid() member function, specify a narrower destination type to
// the member value functions (e.g. val.template ValueOrDie<Dst>()), use one
// of the value helper functions (e.g. ValueOrDieForType<Dst>(val)).
// If you've encountered an _ambiguous overload_ you can use a static_cast<>
// to explicitly cast the result to the destination type.
// If none of that works, you may be better served with the checked_cast<> or
// saturated_cast<> template functions for your particular use case.
template <typename Dst,
typename std::enable_if<
IsNumericRangeContained<Dst, T>::value>::type* = nullptr>
constexpr operator Dst() const {
return static_cast<typename ArithmeticOrUnderlyingEnum<Dst>::type>(value_);
}
private:
const T value_;
};
// Convience wrapper returns a StrictNumeric from the provided arithmetic type.
template <typename T>
constexpr StrictNumeric<typename UnderlyingType<T>::type> MakeStrictNum(
const T value) {
return value;
}
#if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS
// Overload the ostream output operator to make logging work nicely.
template <typename T>
std::ostream& operator<<(std::ostream& os, const StrictNumeric<T>& value) {
os << static_cast<T>(value);
return os;
}
#endif
#define BASE_NUMERIC_COMPARISON_OPERATORS(CLASS, NAME, OP) \
template <typename L, typename R, \
typename std::enable_if< \
internal::Is##CLASS##Op<L, R>::value>::type* = nullptr> \
constexpr bool operator OP(const L lhs, const R rhs) { \
return SafeCompare<NAME, typename UnderlyingType<L>::type, \
typename UnderlyingType<R>::type>(lhs, rhs); \
}
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLess, <)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLessOrEqual, <=)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreater, >)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreaterOrEqual, >=)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsEqual, ==)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsNotEqual, !=)
} // namespace internal
using internal::as_signed;
using internal::as_unsigned;
using internal::checked_cast;
using internal::strict_cast;
using internal::saturated_cast;
using internal::SafeUnsignedAbs;
using internal::StrictNumeric;
using internal::MakeStrictNum;
using internal::IsValueInRangeForNumericType;
using internal::IsTypeInRangeForNumericType;
using internal::IsValueNegative;
// Explicitly make a shorter size_t alias for convenience.
using SizeT = StrictNumeric<size_t>;
} // namespace base
#endif // BASE_NUMERICS_SAFE_CONVERSIONS_H_

View File

@@ -1,51 +0,0 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_ARM_IMPL_H_
#define BASE_NUMERICS_SAFE_CONVERSIONS_ARM_IMPL_H_
#include <cassert>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions_impl.h"
namespace base {
namespace internal {
// Fast saturation to a destination type.
template <typename Dst, typename Src>
struct SaturateFastAsmOp {
static constexpr bool is_supported =
std::is_signed<Src>::value && std::is_integral<Dst>::value &&
std::is_integral<Src>::value &&
IntegerBitsPlusSign<Src>::value <= IntegerBitsPlusSign<int32_t>::value &&
IntegerBitsPlusSign<Dst>::value <= IntegerBitsPlusSign<int32_t>::value &&
!IsTypeInRangeForNumericType<Dst, Src>::value;
__attribute__((always_inline)) static Dst Do(Src value) {
int32_t src = value;
typename std::conditional<std::is_signed<Dst>::value, int32_t,
uint32_t>::type result;
if (std::is_signed<Dst>::value) {
asm("ssat %[dst], %[shift], %[src]"
: [dst] "=r"(result)
: [src] "r"(src), [shift] "n"(IntegerBitsPlusSign<Dst>::value <= 32
? IntegerBitsPlusSign<Dst>::value
: 32));
} else {
asm("usat %[dst], %[shift], %[src]"
: [dst] "=r"(result)
: [src] "r"(src), [shift] "n"(IntegerBitsPlusSign<Dst>::value < 32
? IntegerBitsPlusSign<Dst>::value
: 31));
}
return static_cast<Dst>(result);
}
};
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_SAFE_CONVERSIONS_ARM_IMPL_H_

View File

@@ -1,850 +0,0 @@
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
#define BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
#include <stdint.h>
#include <limits>
#include <type_traits>
#if defined(__GNUC__) || defined(__clang__)
#define BASE_NUMERICS_LIKELY(x) __builtin_expect(!!(x), 1)
#define BASE_NUMERICS_UNLIKELY(x) __builtin_expect(!!(x), 0)
#else
#define BASE_NUMERICS_LIKELY(x) (x)
#define BASE_NUMERICS_UNLIKELY(x) (x)
#endif
namespace base {
namespace internal {
// The std library doesn't provide a binary max_exponent for integers, however
// we can compute an analog using std::numeric_limits<>::digits.
template <typename NumericType>
struct MaxExponent {
static const int value = std::is_floating_point<NumericType>::value
? std::numeric_limits<NumericType>::max_exponent
: std::numeric_limits<NumericType>::digits + 1;
};
// The number of bits (including the sign) in an integer. Eliminates sizeof
// hacks.
template <typename NumericType>
struct IntegerBitsPlusSign {
static const int value = std::numeric_limits<NumericType>::digits +
std::is_signed<NumericType>::value;
};
// Helper templates for integer manipulations.
template <typename Integer>
struct PositionOfSignBit {
static const size_t value = IntegerBitsPlusSign<Integer>::value - 1;
};
// Determines if a numeric value is negative without throwing compiler
// warnings on: unsigned(value) < 0.
template <typename T,
typename std::enable_if<std::is_signed<T>::value>::type* = nullptr>
constexpr bool IsValueNegative(T value) {
static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
return value < 0;
}
template <typename T,
typename std::enable_if<!std::is_signed<T>::value>::type* = nullptr>
constexpr bool IsValueNegative(T) {
static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
return false;
}
// This performs a fast negation, returning a signed value. It works on unsigned
// arguments, but probably doesn't do what you want for any unsigned value
// larger than max / 2 + 1 (i.e. signed min cast to unsigned).
template <typename T>
constexpr typename std::make_signed<T>::type ConditionalNegate(
T x,
bool is_negative) {
static_assert(std::is_integral<T>::value, "Type must be integral");
using SignedT = typename std::make_signed<T>::type;
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<SignedT>(
(static_cast<UnsignedT>(x) ^ -SignedT(is_negative)) + is_negative);
}
// This performs a safe, absolute value via unsigned overflow.
template <typename T>
constexpr typename std::make_unsigned<T>::type SafeUnsignedAbs(T value) {
static_assert(std::is_integral<T>::value, "Type must be integral");
using UnsignedT = typename std::make_unsigned<T>::type;
return IsValueNegative(value) ? 0 - static_cast<UnsignedT>(value)
: static_cast<UnsignedT>(value);
}
// This allows us to switch paths on known compile-time constants.
#if defined(__clang__) || defined(__GNUC__)
constexpr bool CanDetectCompileTimeConstant() {
return true;
}
template <typename T>
constexpr bool IsCompileTimeConstant(const T v) {
return __builtin_constant_p(v);
}
#else
constexpr bool CanDetectCompileTimeConstant() {
return false;
}
template <typename T>
constexpr bool IsCompileTimeConstant(const T) {
return false;
}
#endif
template <typename T>
constexpr bool MustTreatAsConstexpr(const T v) {
// Either we can't detect a compile-time constant, and must always use the
// constexpr path, or we know we have a compile-time constant.
return !CanDetectCompileTimeConstant() || IsCompileTimeConstant(v);
}
// Forces a crash, like a CHECK(false). Used for numeric boundary errors.
// Also used in a constexpr template to trigger a compilation failure on
// an error condition.
struct CheckOnFailure {
template <typename T>
static T HandleFailure() {
#if defined(_MSC_VER)
__debugbreak();
#elif defined(__GNUC__) || defined(__clang__)
__builtin_trap();
#else
((void)(*(volatile char*)0 = 0));
#endif
return T();
}
};
enum IntegerRepresentation {
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED
};
// A range for a given nunmeric Src type is contained for a given numeric Dst
// type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and
// numeric_limits<Src>::lowest() >= numeric_limits<Dst>::lowest() are true.
// We implement this as template specializations rather than simple static
// comparisons to ensure type correctness in our comparisons.
enum NumericRangeRepresentation {
NUMERIC_RANGE_NOT_CONTAINED,
NUMERIC_RANGE_CONTAINED
};
// Helper templates to statically determine if our destination type can contain
// maximum and minimum values represented by the source type.
template <typename Dst,
typename Src,
IntegerRepresentation DstSign = std::is_signed<Dst>::value
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
IntegerRepresentation SrcSign = std::is_signed<Src>::value
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED>
struct StaticDstRangeRelationToSrcRange;
// Same sign: Dst is guaranteed to contain Src only if its range is equal or
// larger.
template <typename Dst, typename Src, IntegerRepresentation Sign>
struct StaticDstRangeRelationToSrcRange<Dst, Src, Sign, Sign> {
static const NumericRangeRepresentation value =
MaxExponent<Dst>::value >= MaxExponent<Src>::value
? NUMERIC_RANGE_CONTAINED
: NUMERIC_RANGE_NOT_CONTAINED;
};
// Unsigned to signed: Dst is guaranteed to contain source only if its range is
// larger.
template <typename Dst, typename Src>
struct StaticDstRangeRelationToSrcRange<Dst,
Src,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_UNSIGNED> {
static const NumericRangeRepresentation value =
MaxExponent<Dst>::value > MaxExponent<Src>::value
? NUMERIC_RANGE_CONTAINED
: NUMERIC_RANGE_NOT_CONTAINED;
};
// Signed to unsigned: Dst cannot be statically determined to contain Src.
template <typename Dst, typename Src>
struct StaticDstRangeRelationToSrcRange<Dst,
Src,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED> {
static const NumericRangeRepresentation value = NUMERIC_RANGE_NOT_CONTAINED;
};
// This class wraps the range constraints as separate booleans so the compiler
// can identify constants and eliminate unused code paths.
class RangeCheck {
public:
constexpr RangeCheck(bool is_in_lower_bound, bool is_in_upper_bound)
: is_underflow_(!is_in_lower_bound), is_overflow_(!is_in_upper_bound) {}
constexpr RangeCheck() : is_underflow_(0), is_overflow_(0) {}
constexpr bool IsValid() const { return !is_overflow_ && !is_underflow_; }
constexpr bool IsInvalid() const { return is_overflow_ && is_underflow_; }
constexpr bool IsOverflow() const { return is_overflow_ && !is_underflow_; }
constexpr bool IsUnderflow() const { return !is_overflow_ && is_underflow_; }
constexpr bool IsOverflowFlagSet() const { return is_overflow_; }
constexpr bool IsUnderflowFlagSet() const { return is_underflow_; }
constexpr bool operator==(const RangeCheck rhs) const {
return is_underflow_ == rhs.is_underflow_ &&
is_overflow_ == rhs.is_overflow_;
}
constexpr bool operator!=(const RangeCheck rhs) const {
return !(*this == rhs);
}
private:
// Do not change the order of these member variables. The integral conversion
// optimization depends on this exact order.
const bool is_underflow_;
const bool is_overflow_;
};
// The following helper template addresses a corner case in range checks for
// conversion from a floating-point type to an integral type of smaller range
// but larger precision (e.g. float -> unsigned). The problem is as follows:
// 1. Integral maximum is always one less than a power of two, so it must be
// truncated to fit the mantissa of the floating point. The direction of
// rounding is implementation defined, but by default it's always IEEE
// floats, which round to nearest and thus result in a value of larger
// magnitude than the integral value.
// Example: float f = UINT_MAX; // f is 4294967296f but UINT_MAX
// // is 4294967295u.
// 2. If the floating point value is equal to the promoted integral maximum
// value, a range check will erroneously pass.
// Example: (4294967296f <= 4294967295u) // This is true due to a precision
// // loss in rounding up to float.
// 3. When the floating point value is then converted to an integral, the
// resulting value is out of range for the target integral type and
// thus is implementation defined.
// Example: unsigned u = (float)INT_MAX; // u will typically overflow to 0.
// To fix this bug we manually truncate the maximum value when the destination
// type is an integral of larger precision than the source floating-point type,
// such that the resulting maximum is represented exactly as a floating point.
template <typename Dst, typename Src, template <typename> class Bounds>
struct NarrowingRange {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = typename std::numeric_limits<Dst>;
// Computes the mask required to make an accurate comparison between types.
static const int kShift =
(MaxExponent<Src>::value > MaxExponent<Dst>::value &&
SrcLimits::digits < DstLimits::digits)
? (DstLimits::digits - SrcLimits::digits)
: 0;
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
// Masks out the integer bits that are beyond the precision of the
// intermediate type used for comparison.
static constexpr T Adjust(T value) {
static_assert(std::is_same<T, Dst>::value, "");
static_assert(kShift < DstLimits::digits, "");
return static_cast<T>(
ConditionalNegate(SafeUnsignedAbs(value) & ~((T(1) << kShift) - T(1)),
IsValueNegative(value)));
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static constexpr T Adjust(T value) {
static_assert(std::is_same<T, Dst>::value, "");
static_assert(kShift == 0, "");
return value;
}
static constexpr Dst max() { return Adjust(Bounds<Dst>::max()); }
static constexpr Dst lowest() { return Adjust(Bounds<Dst>::lowest()); }
};
template <typename Dst,
typename Src,
template <typename> class Bounds,
IntegerRepresentation DstSign = std::is_signed<Dst>::value
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
IntegerRepresentation SrcSign = std::is_signed<Src>::value
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
NumericRangeRepresentation DstRange =
StaticDstRangeRelationToSrcRange<Dst, Src>::value>
struct DstRangeRelationToSrcRangeImpl;
// The following templates are for ranges that must be verified at runtime. We
// split it into checks based on signedness to avoid confusing casts and
// compiler warnings on signed an unsigned comparisons.
// Same sign narrowing: The range is contained for normal limits.
template <typename Dst,
typename Src,
template <typename> class Bounds,
IntegerRepresentation DstSign,
IntegerRepresentation SrcSign>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
DstSign,
SrcSign,
NUMERIC_RANGE_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(
static_cast<Dst>(SrcLimits::lowest()) >= DstLimits::lowest() ||
static_cast<Dst>(value) >= DstLimits::lowest(),
static_cast<Dst>(SrcLimits::max()) <= DstLimits::max() ||
static_cast<Dst>(value) <= DstLimits::max());
}
};
// Signed to signed narrowing: Both the upper and lower boundaries may be
// exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_SIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(value >= DstLimits::lowest(), value <= DstLimits::max());
}
};
// Unsigned to unsigned narrowing: Only the upper bound can be exceeded for
// standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_UNSIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(
DstLimits::lowest() == Dst(0) || value >= DstLimits::lowest(),
value <= DstLimits::max());
}
};
// Unsigned to signed: Only the upper bound can be exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_UNSIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
using Promotion = decltype(Src() + Dst());
return RangeCheck(DstLimits::lowest() <= Dst(0) ||
static_cast<Promotion>(value) >=
static_cast<Promotion>(DstLimits::lowest()),
static_cast<Promotion>(value) <=
static_cast<Promotion>(DstLimits::max()));
}
};
// Signed to unsigned: The upper boundary may be exceeded for a narrower Dst,
// and any negative value exceeds the lower boundary for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
using Promotion = decltype(Src() + Dst());
return RangeCheck(
value >= Src(0) && (DstLimits::lowest() == 0 ||
static_cast<Dst>(value) >= DstLimits::lowest()),
static_cast<Promotion>(SrcLimits::max()) <=
static_cast<Promotion>(DstLimits::max()) ||
static_cast<Promotion>(value) <=
static_cast<Promotion>(DstLimits::max()));
}
};
// Simple wrapper for statically checking if a type's range is contained.
template <typename Dst, typename Src>
struct IsTypeInRangeForNumericType {
static const bool value = StaticDstRangeRelationToSrcRange<Dst, Src>::value ==
NUMERIC_RANGE_CONTAINED;
};
template <typename Dst,
template <typename> class Bounds = std::numeric_limits,
typename Src>
constexpr RangeCheck DstRangeRelationToSrcRange(Src value) {
static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
static_assert(std::is_arithmetic<Dst>::value, "Result must be numeric.");
static_assert(Bounds<Dst>::lowest() < Bounds<Dst>::max(), "");
return DstRangeRelationToSrcRangeImpl<Dst, Src, Bounds>::Check(value);
}
// Integer promotion templates used by the portable checked integer arithmetic.
template <size_t Size, bool IsSigned>
struct IntegerForDigitsAndSign;
#define INTEGER_FOR_DIGITS_AND_SIGN(I) \
template <> \
struct IntegerForDigitsAndSign<IntegerBitsPlusSign<I>::value, \
std::is_signed<I>::value> { \
using type = I; \
}
INTEGER_FOR_DIGITS_AND_SIGN(int8_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint8_t);
INTEGER_FOR_DIGITS_AND_SIGN(int16_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint16_t);
INTEGER_FOR_DIGITS_AND_SIGN(int32_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint32_t);
INTEGER_FOR_DIGITS_AND_SIGN(int64_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint64_t);
#undef INTEGER_FOR_DIGITS_AND_SIGN
// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
// support 128-bit math, then the ArithmeticPromotion template below will need
// to be updated (or more likely replaced with a decltype expression).
static_assert(IntegerBitsPlusSign<intmax_t>::value == 64,
"Max integer size not supported for this toolchain.");
template <typename Integer, bool IsSigned = std::is_signed<Integer>::value>
struct TwiceWiderInteger {
using type =
typename IntegerForDigitsAndSign<IntegerBitsPlusSign<Integer>::value * 2,
IsSigned>::type;
};
enum ArithmeticPromotionCategory {
LEFT_PROMOTION, // Use the type of the left-hand argument.
RIGHT_PROMOTION // Use the type of the right-hand argument.
};
// Determines the type that can represent the largest positive value.
template <typename Lhs,
typename Rhs,
ArithmeticPromotionCategory Promotion =
(MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
? LEFT_PROMOTION
: RIGHT_PROMOTION>
struct MaxExponentPromotion;
template <typename Lhs, typename Rhs>
struct MaxExponentPromotion<Lhs, Rhs, LEFT_PROMOTION> {
using type = Lhs;
};
template <typename Lhs, typename Rhs>
struct MaxExponentPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
using type = Rhs;
};
// Determines the type that can represent the lowest arithmetic value.
template <typename Lhs,
typename Rhs,
ArithmeticPromotionCategory Promotion =
std::is_signed<Lhs>::value
? (std::is_signed<Rhs>::value
? (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value
? LEFT_PROMOTION
: RIGHT_PROMOTION)
: LEFT_PROMOTION)
: (std::is_signed<Rhs>::value
? RIGHT_PROMOTION
: (MaxExponent<Lhs>::value < MaxExponent<Rhs>::value
? LEFT_PROMOTION
: RIGHT_PROMOTION))>
struct LowestValuePromotion;
template <typename Lhs, typename Rhs>
struct LowestValuePromotion<Lhs, Rhs, LEFT_PROMOTION> {
using type = Lhs;
};
template <typename Lhs, typename Rhs>
struct LowestValuePromotion<Lhs, Rhs, RIGHT_PROMOTION> {
using type = Rhs;
};
// Determines the type that is best able to represent an arithmetic result.
template <
typename Lhs,
typename Rhs = Lhs,
bool is_intmax_type =
std::is_integral<typename MaxExponentPromotion<Lhs, Rhs>::type>::value&&
IntegerBitsPlusSign<typename MaxExponentPromotion<Lhs, Rhs>::type>::
value == IntegerBitsPlusSign<intmax_t>::value,
bool is_max_exponent =
StaticDstRangeRelationToSrcRange<
typename MaxExponentPromotion<Lhs, Rhs>::type,
Lhs>::value ==
NUMERIC_RANGE_CONTAINED&& StaticDstRangeRelationToSrcRange<
typename MaxExponentPromotion<Lhs, Rhs>::type,
Rhs>::value == NUMERIC_RANGE_CONTAINED>
struct BigEnoughPromotion;
// The side with the max exponent is big enough.
template <typename Lhs, typename Rhs, bool is_intmax_type>
struct BigEnoughPromotion<Lhs, Rhs, is_intmax_type, true> {
using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
static const bool is_contained = true;
};
// We can use a twice wider type to fit.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotion<Lhs, Rhs, false, false> {
using type =
typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
std::is_signed<Lhs>::value ||
std::is_signed<Rhs>::value>::type;
static const bool is_contained = true;
};
// No type is large enough.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotion<Lhs, Rhs, true, false> {
using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
static const bool is_contained = false;
};
// We can statically check if operations on the provided types can wrap, so we
// can skip the checked operations if they're not needed. So, for an integer we
// care if the destination type preserves the sign and is twice the width of
// the source.
template <typename T, typename Lhs, typename Rhs = Lhs>
struct IsIntegerArithmeticSafe {
static const bool value =
!std::is_floating_point<T>::value &&
!std::is_floating_point<Lhs>::value &&
!std::is_floating_point<Rhs>::value &&
std::is_signed<T>::value >= std::is_signed<Lhs>::value &&
IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Lhs>::value) &&
std::is_signed<T>::value >= std::is_signed<Rhs>::value &&
IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Rhs>::value);
};
// Promotes to a type that can represent any possible result of a binary
// arithmetic operation with the source types.
template <typename Lhs,
typename Rhs,
bool is_promotion_possible = IsIntegerArithmeticSafe<
typename std::conditional<std::is_signed<Lhs>::value ||
std::is_signed<Rhs>::value,
intmax_t,
uintmax_t>::type,
typename MaxExponentPromotion<Lhs, Rhs>::type>::value>
struct FastIntegerArithmeticPromotion;
template <typename Lhs, typename Rhs>
struct FastIntegerArithmeticPromotion<Lhs, Rhs, true> {
using type =
typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
std::is_signed<Lhs>::value ||
std::is_signed<Rhs>::value>::type;
static_assert(IsIntegerArithmeticSafe<type, Lhs, Rhs>::value, "");
static const bool is_contained = true;
};
template <typename Lhs, typename Rhs>
struct FastIntegerArithmeticPromotion<Lhs, Rhs, false> {
using type = typename BigEnoughPromotion<Lhs, Rhs>::type;
static const bool is_contained = false;
};
// Extracts the underlying type from an enum.
template <typename T, bool is_enum = std::is_enum<T>::value>
struct ArithmeticOrUnderlyingEnum;
template <typename T>
struct ArithmeticOrUnderlyingEnum<T, true> {
using type = typename std::underlying_type<T>::type;
static const bool value = std::is_arithmetic<type>::value;
};
template <typename T>
struct ArithmeticOrUnderlyingEnum<T, false> {
using type = T;
static const bool value = std::is_arithmetic<type>::value;
};
// The following are helper templates used in the CheckedNumeric class.
template <typename T>
class CheckedNumeric;
template <typename T>
class ClampedNumeric;
template <typename T>
class StrictNumeric;
// Used to treat CheckedNumeric and arithmetic underlying types the same.
template <typename T>
struct UnderlyingType {
using type = typename ArithmeticOrUnderlyingEnum<T>::type;
static const bool is_numeric = std::is_arithmetic<type>::value;
static const bool is_checked = false;
static const bool is_clamped = false;
static const bool is_strict = false;
};
template <typename T>
struct UnderlyingType<CheckedNumeric<T>> {
using type = T;
static const bool is_numeric = true;
static const bool is_checked = true;
static const bool is_clamped = false;
static const bool is_strict = false;
};
template <typename T>
struct UnderlyingType<ClampedNumeric<T>> {
using type = T;
static const bool is_numeric = true;
static const bool is_checked = false;
static const bool is_clamped = true;
static const bool is_strict = false;
};
template <typename T>
struct UnderlyingType<StrictNumeric<T>> {
using type = T;
static const bool is_numeric = true;
static const bool is_checked = false;
static const bool is_clamped = false;
static const bool is_strict = true;
};
template <typename L, typename R>
struct IsCheckedOp {
static const bool value =
UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked);
};
template <typename L, typename R>
struct IsClampedOp {
static const bool value =
UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
(UnderlyingType<L>::is_clamped || UnderlyingType<R>::is_clamped) &&
!(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked);
};
template <typename L, typename R>
struct IsStrictOp {
static const bool value =
UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
(UnderlyingType<L>::is_strict || UnderlyingType<R>::is_strict) &&
!(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked) &&
!(UnderlyingType<L>::is_clamped || UnderlyingType<R>::is_clamped);
};
// as_signed<> returns the supplied integral value (or integral castable
// Numeric template) cast as a signed integral of equivalent precision.
// I.e. it's mostly an alias for: static_cast<std::make_signed<T>::type>(t)
template <typename Src>
constexpr typename std::make_signed<
typename base::internal::UnderlyingType<Src>::type>::type
as_signed(const Src value) {
static_assert(std::is_integral<decltype(as_signed(value))>::value,
"Argument must be a signed or unsigned integer type.");
return static_cast<decltype(as_signed(value))>(value);
}
// as_unsigned<> returns the supplied integral value (or integral castable
// Numeric template) cast as an unsigned integral of equivalent precision.
// I.e. it's mostly an alias for: static_cast<std::make_unsigned<T>::type>(t)
template <typename Src>
constexpr typename std::make_unsigned<
typename base::internal::UnderlyingType<Src>::type>::type
as_unsigned(const Src value) {
static_assert(std::is_integral<decltype(as_unsigned(value))>::value,
"Argument must be a signed or unsigned integer type.");
return static_cast<decltype(as_unsigned(value))>(value);
}
template <typename L, typename R>
constexpr bool IsLessImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range) {
return l_range.IsUnderflow() || r_range.IsOverflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) <
static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsLess {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return IsLessImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
constexpr bool IsLessOrEqualImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range) {
return l_range.IsUnderflow() || r_range.IsOverflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) <=
static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsLessOrEqual {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return IsLessOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
constexpr bool IsGreaterImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range) {
return l_range.IsOverflow() || r_range.IsUnderflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) >
static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsGreater {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return IsGreaterImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
constexpr bool IsGreaterOrEqualImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range) {
return l_range.IsOverflow() || r_range.IsUnderflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) >=
static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsGreaterOrEqual {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return IsGreaterOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
struct IsEqual {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return DstRangeRelationToSrcRange<R>(lhs) ==
DstRangeRelationToSrcRange<L>(rhs) &&
static_cast<decltype(lhs + rhs)>(lhs) ==
static_cast<decltype(lhs + rhs)>(rhs);
}
};
template <typename L, typename R>
struct IsNotEqual {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return DstRangeRelationToSrcRange<R>(lhs) !=
DstRangeRelationToSrcRange<L>(rhs) ||
static_cast<decltype(lhs + rhs)>(lhs) !=
static_cast<decltype(lhs + rhs)>(rhs);
}
};
// These perform the actual math operations on the CheckedNumerics.
// Binary arithmetic operations.
template <template <typename, typename> class C, typename L, typename R>
constexpr bool SafeCompare(const L lhs, const R rhs) {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
using Promotion = BigEnoughPromotion<L, R>;
using BigType = typename Promotion::type;
return Promotion::is_contained
// Force to a larger type for speed if both are contained.
? C<BigType, BigType>::Test(
static_cast<BigType>(static_cast<L>(lhs)),
static_cast<BigType>(static_cast<R>(rhs)))
// Let the template functions figure it out for mixed types.
: C<L, R>::Test(lhs, rhs);
}
template <typename Dst, typename Src>
constexpr bool IsMaxInRangeForNumericType() {
return IsGreaterOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::max(),
std::numeric_limits<Src>::max());
}
template <typename Dst, typename Src>
constexpr bool IsMinInRangeForNumericType() {
return IsLessOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::lowest(),
std::numeric_limits<Src>::lowest());
}
template <typename Dst, typename Src>
constexpr Dst CommonMax() {
return !IsMaxInRangeForNumericType<Dst, Src>()
? Dst(std::numeric_limits<Dst>::max())
: Dst(std::numeric_limits<Src>::max());
}
template <typename Dst, typename Src>
constexpr Dst CommonMin() {
return !IsMinInRangeForNumericType<Dst, Src>()
? Dst(std::numeric_limits<Dst>::lowest())
: Dst(std::numeric_limits<Src>::lowest());
}
// This is a wrapper to generate return the max or min for a supplied type.
// If the argument is false, the returned value is the maximum. If true the
// returned value is the minimum.
template <typename Dst, typename Src = Dst>
constexpr Dst CommonMaxOrMin(bool is_min) {
return is_min ? CommonMin<Dst, Src>() : CommonMax<Dst, Src>();
}
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_

View File

@@ -1,12 +0,0 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_MATH_H_
#define BASE_NUMERICS_SAFE_MATH_H_
#include "base/numerics/checked_math.h"
#include "base/numerics/clamped_math.h"
#include "base/numerics/safe_conversions.h"
#endif // BASE_NUMERICS_SAFE_MATH_H_

View File

@@ -1,122 +0,0 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_
#define BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_
#include <cassert>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions.h"
namespace base {
namespace internal {
template <typename T, typename U>
struct CheckedMulFastAsmOp {
static const bool is_supported =
FastIntegerArithmeticPromotion<T, U>::is_contained;
// The following is much more efficient than the Clang and GCC builtins for
// performing overflow-checked multiplication when a twice wider type is
// available. The below compiles down to 2-3 instructions, depending on the
// width of the types in use.
// As an example, an int32_t multiply compiles to:
// smull r0, r1, r0, r1
// cmp r1, r1, asr #31
// And an int16_t multiply compiles to:
// smulbb r1, r1, r0
// asr r2, r1, #16
// cmp r2, r1, asr #15
template <typename V>
__attribute__((always_inline)) static bool Do(T x, U y, V* result) {
using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
Promotion presult;
presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
*result = static_cast<V>(presult);
return IsValueInRangeForNumericType<V>(presult);
}
};
template <typename T, typename U>
struct ClampedAddFastAsmOp {
static const bool is_supported =
BigEnoughPromotion<T, U>::is_contained &&
IsTypeInRangeForNumericType<
int32_t,
typename BigEnoughPromotion<T, U>::type>::value;
template <typename V>
__attribute__((always_inline)) static V Do(T x, U y) {
// This will get promoted to an int, so let the compiler do whatever is
// clever and rely on the saturated cast to bounds check.
if (IsIntegerArithmeticSafe<int, T, U>::value)
return saturated_cast<V>(x + y);
int32_t result;
int32_t x_i32 = checked_cast<int32_t>(x);
int32_t y_i32 = checked_cast<int32_t>(y);
asm("qadd %[result], %[first], %[second]"
: [result] "=r"(result)
: [first] "r"(x_i32), [second] "r"(y_i32));
return saturated_cast<V>(result);
}
};
template <typename T, typename U>
struct ClampedSubFastAsmOp {
static const bool is_supported =
BigEnoughPromotion<T, U>::is_contained &&
IsTypeInRangeForNumericType<
int32_t,
typename BigEnoughPromotion<T, U>::type>::value;
template <typename V>
__attribute__((always_inline)) static V Do(T x, U y) {
// This will get promoted to an int, so let the compiler do whatever is
// clever and rely on the saturated cast to bounds check.
if (IsIntegerArithmeticSafe<int, T, U>::value)
return saturated_cast<V>(x - y);
int32_t result;
int32_t x_i32 = checked_cast<int32_t>(x);
int32_t y_i32 = checked_cast<int32_t>(y);
asm("qsub %[result], %[first], %[second]"
: [result] "=r"(result)
: [first] "r"(x_i32), [second] "r"(y_i32));
return saturated_cast<V>(result);
}
};
template <typename T, typename U>
struct ClampedMulFastAsmOp {
static const bool is_supported = CheckedMulFastAsmOp<T, U>::is_supported;
template <typename V>
__attribute__((always_inline)) static V Do(T x, U y) {
// Use the CheckedMulFastAsmOp for full-width 32-bit values, because
// it's fewer instructions than promoting and then saturating.
if (!IsIntegerArithmeticSafe<int32_t, T, U>::value &&
!IsIntegerArithmeticSafe<uint32_t, T, U>::value) {
V result;
if (CheckedMulFastAsmOp<T, U>::Do(x, y, &result))
return result;
return CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y));
}
assert((FastIntegerArithmeticPromotion<T, U>::is_contained));
using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
return saturated_cast<V>(static_cast<Promotion>(x) *
static_cast<Promotion>(y));
}
};
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_

View File

@@ -1,157 +0,0 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_
#define BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_
#include <cassert>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions.h"
#if !defined(__native_client__) && (defined(__ARMEL__) || defined(__arch64__))
#include "base/numerics/safe_math_arm_impl.h"
#define BASE_HAS_ASSEMBLER_SAFE_MATH (1)
#else
#define BASE_HAS_ASSEMBLER_SAFE_MATH (0)
#endif
namespace base {
namespace internal {
// These are the non-functioning boilerplate implementations of the optimized
// safe math routines.
#if !BASE_HAS_ASSEMBLER_SAFE_MATH
template <typename T, typename U>
struct CheckedMulFastAsmOp {
static const bool is_supported = false;
template <typename V>
static constexpr bool Do(T, U, V*) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
template <typename T, typename U>
struct ClampedAddFastAsmOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
template <typename T, typename U>
struct ClampedSubFastAsmOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
template <typename T, typename U>
struct ClampedMulFastAsmOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
#endif // BASE_HAS_ASSEMBLER_SAFE_MATH
#undef BASE_HAS_ASSEMBLER_SAFE_MATH
template <typename T, typename U>
struct CheckedAddFastOp {
static const bool is_supported = true;
template <typename V>
__attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) {
return !__builtin_add_overflow(x, y, result);
}
};
template <typename T, typename U>
struct CheckedSubFastOp {
static const bool is_supported = true;
template <typename V>
__attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) {
return !__builtin_sub_overflow(x, y, result);
}
};
template <typename T, typename U>
struct CheckedMulFastOp {
#if defined(__clang__)
// TODO(jschuh): Get the Clang runtime library issues sorted out so we can
// support full-width, mixed-sign multiply builtins.
// https://crbug.com/613003
// We can support intptr_t, uintptr_t, or a smaller common type.
static const bool is_supported =
(IsTypeInRangeForNumericType<intptr_t, T>::value &&
IsTypeInRangeForNumericType<intptr_t, U>::value) ||
(IsTypeInRangeForNumericType<uintptr_t, T>::value &&
IsTypeInRangeForNumericType<uintptr_t, U>::value);
#else
static const bool is_supported = true;
#endif
template <typename V>
__attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) {
return CheckedMulFastAsmOp<T, U>::is_supported
? CheckedMulFastAsmOp<T, U>::Do(x, y, result)
: !__builtin_mul_overflow(x, y, result);
}
};
template <typename T, typename U>
struct ClampedAddFastOp {
static const bool is_supported = ClampedAddFastAsmOp<T, U>::is_supported;
template <typename V>
__attribute__((always_inline)) static V Do(T x, U y) {
return ClampedAddFastAsmOp<T, U>::template Do<V>(x, y);
}
};
template <typename T, typename U>
struct ClampedSubFastOp {
static const bool is_supported = ClampedSubFastAsmOp<T, U>::is_supported;
template <typename V>
__attribute__((always_inline)) static V Do(T x, U y) {
return ClampedSubFastAsmOp<T, U>::template Do<V>(x, y);
}
};
template <typename T, typename U>
struct ClampedMulFastOp {
static const bool is_supported = ClampedMulFastAsmOp<T, U>::is_supported;
template <typename V>
__attribute__((always_inline)) static V Do(T x, U y) {
return ClampedMulFastAsmOp<T, U>::template Do<V>(x, y);
}
};
template <typename T>
struct ClampedNegFastOp {
static const bool is_supported = std::is_signed<T>::value;
__attribute__((always_inline)) static T Do(T value) {
// Use this when there is no assembler path available.
if (!ClampedSubFastAsmOp<T, T>::is_supported) {
T result;
return !__builtin_sub_overflow(T(0), value, &result)
? result
: std::numeric_limits<T>::max();
}
// Fallback to the normal subtraction path.
return ClampedSubFastOp<T, T>::template Do<T>(T(0), value);
}
};
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_

View File

@@ -1,240 +0,0 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_
#define BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_
#include <stddef.h>
#include <stdint.h>
#include <cassert>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions.h"
#ifdef __asmjs__
// Optimized safe math instructions are incompatible with asmjs.
#define BASE_HAS_OPTIMIZED_SAFE_MATH (0)
// Where available use builtin math overflow support on Clang and GCC.
#elif !defined(__native_client__) && \
((defined(__clang__) && \
((__clang_major__ > 3) || \
(__clang_major__ == 3 && __clang_minor__ >= 4))) || \
(defined(__GNUC__) && __GNUC__ >= 5))
#include "base/numerics/safe_math_clang_gcc_impl.h"
#define BASE_HAS_OPTIMIZED_SAFE_MATH (1)
#else
#define BASE_HAS_OPTIMIZED_SAFE_MATH (0)
#endif
namespace base {
namespace internal {
// These are the non-functioning boilerplate implementations of the optimized
// safe math routines.
#if !BASE_HAS_OPTIMIZED_SAFE_MATH
template <typename T, typename U>
struct CheckedAddFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr bool Do(T, U, V*) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
template <typename T, typename U>
struct CheckedSubFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr bool Do(T, U, V*) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
template <typename T, typename U>
struct CheckedMulFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr bool Do(T, U, V*) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
template <typename T, typename U>
struct ClampedAddFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
template <typename T, typename U>
struct ClampedSubFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
template <typename T, typename U>
struct ClampedMulFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
template <typename T>
struct ClampedNegFastOp {
static const bool is_supported = false;
static constexpr T Do(T) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<T>();
}
};
#endif // BASE_HAS_OPTIMIZED_SAFE_MATH
#undef BASE_HAS_OPTIMIZED_SAFE_MATH
// This is used for UnsignedAbs, where we need to support floating-point
// template instantiations even though we don't actually support the operations.
// However, there is no corresponding implementation of e.g. SafeUnsignedAbs,
// so the float versions will not compile.
template <typename Numeric,
bool IsInteger = std::is_integral<Numeric>::value,
bool IsFloat = std::is_floating_point<Numeric>::value>
struct UnsignedOrFloatForSize;
template <typename Numeric>
struct UnsignedOrFloatForSize<Numeric, true, false> {
using type = typename std::make_unsigned<Numeric>::type;
};
template <typename Numeric>
struct UnsignedOrFloatForSize<Numeric, false, true> {
using type = Numeric;
};
// Wrap the unary operations to allow SFINAE when instantiating integrals versus
// floating points. These don't perform any overflow checking. Rather, they
// exhibit well-defined overflow semantics and rely on the caller to detect
// if an overflow occured.
template <typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
constexpr T NegateWrapper(T value) {
using UnsignedT = typename std::make_unsigned<T>::type;
// This will compile to a NEG on Intel, and is normal negation on ARM.
return static_cast<T>(UnsignedT(0) - static_cast<UnsignedT>(value));
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
constexpr T NegateWrapper(T value) {
return -value;
}
template <typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
constexpr typename std::make_unsigned<T>::type InvertWrapper(T value) {
return ~value;
}
template <typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
constexpr T AbsWrapper(T value) {
return static_cast<T>(SafeUnsignedAbs(value));
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
constexpr T AbsWrapper(T value) {
return value < 0 ? -value : value;
}
template <template <typename, typename, typename> class M,
typename L,
typename R>
struct MathWrapper {
using math = M<typename UnderlyingType<L>::type,
typename UnderlyingType<R>::type,
void>;
using type = typename math::result_type;
};
// These variadic templates work out the return types.
// TODO(jschuh): Rip all this out once we have C++14 non-trailing auto support.
template <template <typename, typename, typename> class M,
typename L,
typename R,
typename... Args>
struct ResultType;
template <template <typename, typename, typename> class M,
typename L,
typename R>
struct ResultType<M, L, R> {
using type = typename MathWrapper<M, L, R>::type;
};
template <template <typename, typename, typename> class M,
typename L,
typename R,
typename... Args>
struct ResultType {
using type =
typename ResultType<M, typename ResultType<M, L, R>::type, Args...>::type;
};
// The following macros are just boilerplate for the standard arithmetic
// operator overloads and variadic function templates. A macro isn't the nicest
// solution, but it beats rewriting these over and over again.
#define BASE_NUMERIC_ARITHMETIC_VARIADIC(CLASS, CL_ABBR, OP_NAME) \
template <typename L, typename R, typename... Args> \
constexpr CLASS##Numeric< \
typename ResultType<CLASS##OP_NAME##Op, L, R, Args...>::type> \
CL_ABBR##OP_NAME(const L lhs, const R rhs, const Args... args) { \
return CL_ABBR##MathOp<CLASS##OP_NAME##Op, L, R, Args...>(lhs, rhs, \
args...); \
}
#define BASE_NUMERIC_ARITHMETIC_OPERATORS(CLASS, CL_ABBR, OP_NAME, OP, CMP_OP) \
/* Binary arithmetic operator for all CLASS##Numeric operations. */ \
template <typename L, typename R, \
typename std::enable_if<Is##CLASS##Op<L, R>::value>::type* = \
nullptr> \
constexpr CLASS##Numeric< \
typename MathWrapper<CLASS##OP_NAME##Op, L, R>::type> \
operator OP(const L lhs, const R rhs) { \
return decltype(lhs OP rhs)::template MathOp<CLASS##OP_NAME##Op>(lhs, \
rhs); \
} \
/* Assignment arithmetic operator implementation from CLASS##Numeric. */ \
template <typename L> \
template <typename R> \
constexpr CLASS##Numeric<L>& CLASS##Numeric<L>::operator CMP_OP( \
const R rhs) { \
return MathOp<CLASS##OP_NAME##Op>(rhs); \
} \
/* Variadic arithmetic functions that return CLASS##Numeric. */ \
BASE_NUMERIC_ARITHMETIC_VARIADIC(CLASS, CL_ABBR, OP_NAME)
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_

View File

@@ -1,13 +0,0 @@
{"Registrations":[
{
"component": {
"type": "git",
"git": {
"repositoryUrl": "https://github.com/chromium/chromium",
"commitHash": "d8710dd959da8e3be56f20af8cc94fbf560fbb6b"
}
}
}
],
"Version": 1
}

View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) 2019 Maxime Pinard
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,17 +0,0 @@
### Notes for Future Maintainers
This was originally imported by @miniksa in March 2020.
The provenance information (where it came from and which commit) is stored in the file `cgmanifest.json` in the same directory as this readme.
Please update the provenance information in that file when ingesting an updated version of the dependent library.
That provenance file is automatically read and inventoried by Microsoft systems to ensure compliance with appropiate governance standards.
## What should be done to update this in the future?
1. Go to pinam45/dynamic_bitset repository on GitHub.
2. Take the entire contents of the include directory wholesale and drop it in the root directory here.
3. Don't change anything about it.
4. Validate that the license in the root of the repository didn't change and update it if so. It is sitting in the same directory as this readme.
If it changed dramatically, ensure that it is still compatible with our license scheme. Also update the NOTICE file in the root of our repository to declare the third-party usage.
5. Submit the pull.

View File

@@ -1,13 +0,0 @@
{"Registrations":[
{
"component": {
"type": "git",
"git": {
"repositoryUrl": "https://github.com/pinam45/dynamic_bitset",
"commitHash": "00f2d066ce9deebf28b006636150e5a882beb83f"
}
}
}
],
"Version": 1
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,27 +0,0 @@
Copyright (c) 2012 - present, Victor Zverovich
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--- Optional exception to the license ---
As an exception, if, as a result of your compiling your source code, portions
of this Software are embedded into a machine-executable object form of such
source code, you may redistribute such embedded portions in such object form
without including the above copyright and permission notices.

View File

@@ -1,17 +0,0 @@
### Notes for Future Maintainers
This was originally imported by @DHowett-MSFT in April 2020.
The provenance information (where it came from and which commit) is stored in the file `cgmanifest.json` in the same directory as this readme.
Please update the provenance information in that file when ingesting an updated version of the dependent library.
That provenance file is automatically read and inventoried by Microsoft systems to ensure compliance with appropiate governance standards.
## What should be done to update this in the future?
1. Go to fmtlib/fmt repository on GitHub.
2. Take the entire contents of the include/ and src/ directories and drop them in this directory.
3. Don't change anything about it.
4. Validate that the license in the root of the repository didn't change and update it if so. It is sitting in the same directory as this readme.
If it changed dramatically, ensure that it is still compatible with our license scheme. Also update the NOTICE file in the root of our repository to declare the third-party usage.
5. Submit the pull.

View File

@@ -1,13 +0,0 @@
{"Registrations":[
{
"component": {
"type": "git",
"git": {
"repositoryUrl": "https://github.com/fmtlib/fmt",
"commitHash": "9bdd1596cef1b57b9556f8bef32dc4a32322ef3e"
}
}
}
],
"Version": 1
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,568 +0,0 @@
// Formatting library for C++ - color support
//
// Copyright (c) 2018 - present, Victor Zverovich and fmt contributors
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_COLOR_H_
#define FMT_COLOR_H_
#include "format.h"
FMT_BEGIN_NAMESPACE
enum class color : uint32_t {
alice_blue = 0xF0F8FF, // rgb(240,248,255)
antique_white = 0xFAEBD7, // rgb(250,235,215)
aqua = 0x00FFFF, // rgb(0,255,255)
aquamarine = 0x7FFFD4, // rgb(127,255,212)
azure = 0xF0FFFF, // rgb(240,255,255)
beige = 0xF5F5DC, // rgb(245,245,220)
bisque = 0xFFE4C4, // rgb(255,228,196)
black = 0x000000, // rgb(0,0,0)
blanched_almond = 0xFFEBCD, // rgb(255,235,205)
blue = 0x0000FF, // rgb(0,0,255)
blue_violet = 0x8A2BE2, // rgb(138,43,226)
brown = 0xA52A2A, // rgb(165,42,42)
burly_wood = 0xDEB887, // rgb(222,184,135)
cadet_blue = 0x5F9EA0, // rgb(95,158,160)
chartreuse = 0x7FFF00, // rgb(127,255,0)
chocolate = 0xD2691E, // rgb(210,105,30)
coral = 0xFF7F50, // rgb(255,127,80)
cornflower_blue = 0x6495ED, // rgb(100,149,237)
cornsilk = 0xFFF8DC, // rgb(255,248,220)
crimson = 0xDC143C, // rgb(220,20,60)
cyan = 0x00FFFF, // rgb(0,255,255)
dark_blue = 0x00008B, // rgb(0,0,139)
dark_cyan = 0x008B8B, // rgb(0,139,139)
dark_golden_rod = 0xB8860B, // rgb(184,134,11)
dark_gray = 0xA9A9A9, // rgb(169,169,169)
dark_green = 0x006400, // rgb(0,100,0)
dark_khaki = 0xBDB76B, // rgb(189,183,107)
dark_magenta = 0x8B008B, // rgb(139,0,139)
dark_olive_green = 0x556B2F, // rgb(85,107,47)
dark_orange = 0xFF8C00, // rgb(255,140,0)
dark_orchid = 0x9932CC, // rgb(153,50,204)
dark_red = 0x8B0000, // rgb(139,0,0)
dark_salmon = 0xE9967A, // rgb(233,150,122)
dark_sea_green = 0x8FBC8F, // rgb(143,188,143)
dark_slate_blue = 0x483D8B, // rgb(72,61,139)
dark_slate_gray = 0x2F4F4F, // rgb(47,79,79)
dark_turquoise = 0x00CED1, // rgb(0,206,209)
dark_violet = 0x9400D3, // rgb(148,0,211)
deep_pink = 0xFF1493, // rgb(255,20,147)
deep_sky_blue = 0x00BFFF, // rgb(0,191,255)
dim_gray = 0x696969, // rgb(105,105,105)
dodger_blue = 0x1E90FF, // rgb(30,144,255)
fire_brick = 0xB22222, // rgb(178,34,34)
floral_white = 0xFFFAF0, // rgb(255,250,240)
forest_green = 0x228B22, // rgb(34,139,34)
fuchsia = 0xFF00FF, // rgb(255,0,255)
gainsboro = 0xDCDCDC, // rgb(220,220,220)
ghost_white = 0xF8F8FF, // rgb(248,248,255)
gold = 0xFFD700, // rgb(255,215,0)
golden_rod = 0xDAA520, // rgb(218,165,32)
gray = 0x808080, // rgb(128,128,128)
green = 0x008000, // rgb(0,128,0)
green_yellow = 0xADFF2F, // rgb(173,255,47)
honey_dew = 0xF0FFF0, // rgb(240,255,240)
hot_pink = 0xFF69B4, // rgb(255,105,180)
indian_red = 0xCD5C5C, // rgb(205,92,92)
indigo = 0x4B0082, // rgb(75,0,130)
ivory = 0xFFFFF0, // rgb(255,255,240)
khaki = 0xF0E68C, // rgb(240,230,140)
lavender = 0xE6E6FA, // rgb(230,230,250)
lavender_blush = 0xFFF0F5, // rgb(255,240,245)
lawn_green = 0x7CFC00, // rgb(124,252,0)
lemon_chiffon = 0xFFFACD, // rgb(255,250,205)
light_blue = 0xADD8E6, // rgb(173,216,230)
light_coral = 0xF08080, // rgb(240,128,128)
light_cyan = 0xE0FFFF, // rgb(224,255,255)
light_golden_rod_yellow = 0xFAFAD2, // rgb(250,250,210)
light_gray = 0xD3D3D3, // rgb(211,211,211)
light_green = 0x90EE90, // rgb(144,238,144)
light_pink = 0xFFB6C1, // rgb(255,182,193)
light_salmon = 0xFFA07A, // rgb(255,160,122)
light_sea_green = 0x20B2AA, // rgb(32,178,170)
light_sky_blue = 0x87CEFA, // rgb(135,206,250)
light_slate_gray = 0x778899, // rgb(119,136,153)
light_steel_blue = 0xB0C4DE, // rgb(176,196,222)
light_yellow = 0xFFFFE0, // rgb(255,255,224)
lime = 0x00FF00, // rgb(0,255,0)
lime_green = 0x32CD32, // rgb(50,205,50)
linen = 0xFAF0E6, // rgb(250,240,230)
magenta = 0xFF00FF, // rgb(255,0,255)
maroon = 0x800000, // rgb(128,0,0)
medium_aquamarine = 0x66CDAA, // rgb(102,205,170)
medium_blue = 0x0000CD, // rgb(0,0,205)
medium_orchid = 0xBA55D3, // rgb(186,85,211)
medium_purple = 0x9370DB, // rgb(147,112,219)
medium_sea_green = 0x3CB371, // rgb(60,179,113)
medium_slate_blue = 0x7B68EE, // rgb(123,104,238)
medium_spring_green = 0x00FA9A, // rgb(0,250,154)
medium_turquoise = 0x48D1CC, // rgb(72,209,204)
medium_violet_red = 0xC71585, // rgb(199,21,133)
midnight_blue = 0x191970, // rgb(25,25,112)
mint_cream = 0xF5FFFA, // rgb(245,255,250)
misty_rose = 0xFFE4E1, // rgb(255,228,225)
moccasin = 0xFFE4B5, // rgb(255,228,181)
navajo_white = 0xFFDEAD, // rgb(255,222,173)
navy = 0x000080, // rgb(0,0,128)
old_lace = 0xFDF5E6, // rgb(253,245,230)
olive = 0x808000, // rgb(128,128,0)
olive_drab = 0x6B8E23, // rgb(107,142,35)
orange = 0xFFA500, // rgb(255,165,0)
orange_red = 0xFF4500, // rgb(255,69,0)
orchid = 0xDA70D6, // rgb(218,112,214)
pale_golden_rod = 0xEEE8AA, // rgb(238,232,170)
pale_green = 0x98FB98, // rgb(152,251,152)
pale_turquoise = 0xAFEEEE, // rgb(175,238,238)
pale_violet_red = 0xDB7093, // rgb(219,112,147)
papaya_whip = 0xFFEFD5, // rgb(255,239,213)
peach_puff = 0xFFDAB9, // rgb(255,218,185)
peru = 0xCD853F, // rgb(205,133,63)
pink = 0xFFC0CB, // rgb(255,192,203)
plum = 0xDDA0DD, // rgb(221,160,221)
powder_blue = 0xB0E0E6, // rgb(176,224,230)
purple = 0x800080, // rgb(128,0,128)
rebecca_purple = 0x663399, // rgb(102,51,153)
red = 0xFF0000, // rgb(255,0,0)
rosy_brown = 0xBC8F8F, // rgb(188,143,143)
royal_blue = 0x4169E1, // rgb(65,105,225)
saddle_brown = 0x8B4513, // rgb(139,69,19)
salmon = 0xFA8072, // rgb(250,128,114)
sandy_brown = 0xF4A460, // rgb(244,164,96)
sea_green = 0x2E8B57, // rgb(46,139,87)
sea_shell = 0xFFF5EE, // rgb(255,245,238)
sienna = 0xA0522D, // rgb(160,82,45)
silver = 0xC0C0C0, // rgb(192,192,192)
sky_blue = 0x87CEEB, // rgb(135,206,235)
slate_blue = 0x6A5ACD, // rgb(106,90,205)
slate_gray = 0x708090, // rgb(112,128,144)
snow = 0xFFFAFA, // rgb(255,250,250)
spring_green = 0x00FF7F, // rgb(0,255,127)
steel_blue = 0x4682B4, // rgb(70,130,180)
tan = 0xD2B48C, // rgb(210,180,140)
teal = 0x008080, // rgb(0,128,128)
thistle = 0xD8BFD8, // rgb(216,191,216)
tomato = 0xFF6347, // rgb(255,99,71)
turquoise = 0x40E0D0, // rgb(64,224,208)
violet = 0xEE82EE, // rgb(238,130,238)
wheat = 0xF5DEB3, // rgb(245,222,179)
white = 0xFFFFFF, // rgb(255,255,255)
white_smoke = 0xF5F5F5, // rgb(245,245,245)
yellow = 0xFFFF00, // rgb(255,255,0)
yellow_green = 0x9ACD32 // rgb(154,205,50)
}; // enum class color
enum class terminal_color : uint8_t {
black = 30,
red,
green,
yellow,
blue,
magenta,
cyan,
white,
bright_black = 90,
bright_red,
bright_green,
bright_yellow,
bright_blue,
bright_magenta,
bright_cyan,
bright_white
};
enum class emphasis : uint8_t {
bold = 1,
italic = 1 << 1,
underline = 1 << 2,
strikethrough = 1 << 3
};
// rgb is a struct for red, green and blue colors.
// Using the name "rgb" makes some editors show the color in a tooltip.
struct rgb {
FMT_CONSTEXPR rgb() : r(0), g(0), b(0) {}
FMT_CONSTEXPR rgb(uint8_t r_, uint8_t g_, uint8_t b_) : r(r_), g(g_), b(b_) {}
FMT_CONSTEXPR rgb(uint32_t hex)
: r((hex >> 16) & 0xFF), g((hex >> 8) & 0xFF), b(hex & 0xFF) {}
FMT_CONSTEXPR rgb(color hex)
: r((uint32_t(hex) >> 16) & 0xFF),
g((uint32_t(hex) >> 8) & 0xFF),
b(uint32_t(hex) & 0xFF) {}
uint8_t r;
uint8_t g;
uint8_t b;
};
namespace internal {
// color is a struct of either a rgb color or a terminal color.
struct color_type {
FMT_CONSTEXPR color_type() FMT_NOEXCEPT : is_rgb(), value{} {}
FMT_CONSTEXPR color_type(color rgb_color) FMT_NOEXCEPT : is_rgb(true),
value{} {
value.rgb_color = static_cast<uint32_t>(rgb_color);
}
FMT_CONSTEXPR color_type(rgb rgb_color) FMT_NOEXCEPT : is_rgb(true), value{} {
value.rgb_color = (static_cast<uint32_t>(rgb_color.r) << 16) |
(static_cast<uint32_t>(rgb_color.g) << 8) | rgb_color.b;
}
FMT_CONSTEXPR color_type(terminal_color term_color) FMT_NOEXCEPT : is_rgb(),
value{} {
value.term_color = static_cast<uint8_t>(term_color);
}
bool is_rgb;
union color_union {
uint8_t term_color;
uint32_t rgb_color;
} value;
};
} // namespace internal
// Experimental text formatting support.
class text_style {
public:
FMT_CONSTEXPR text_style(emphasis em = emphasis()) FMT_NOEXCEPT
: set_foreground_color(),
set_background_color(),
ems(em) {}
FMT_CONSTEXPR text_style& operator|=(const text_style& rhs) {
if (!set_foreground_color) {
set_foreground_color = rhs.set_foreground_color;
foreground_color = rhs.foreground_color;
} else if (rhs.set_foreground_color) {
if (!foreground_color.is_rgb || !rhs.foreground_color.is_rgb)
FMT_THROW(format_error("can't OR a terminal color"));
foreground_color.value.rgb_color |= rhs.foreground_color.value.rgb_color;
}
if (!set_background_color) {
set_background_color = rhs.set_background_color;
background_color = rhs.background_color;
} else if (rhs.set_background_color) {
if (!background_color.is_rgb || !rhs.background_color.is_rgb)
FMT_THROW(format_error("can't OR a terminal color"));
background_color.value.rgb_color |= rhs.background_color.value.rgb_color;
}
ems = static_cast<emphasis>(static_cast<uint8_t>(ems) |
static_cast<uint8_t>(rhs.ems));
return *this;
}
friend FMT_CONSTEXPR text_style operator|(text_style lhs,
const text_style& rhs) {
return lhs |= rhs;
}
FMT_CONSTEXPR text_style& operator&=(const text_style& rhs) {
if (!set_foreground_color) {
set_foreground_color = rhs.set_foreground_color;
foreground_color = rhs.foreground_color;
} else if (rhs.set_foreground_color) {
if (!foreground_color.is_rgb || !rhs.foreground_color.is_rgb)
FMT_THROW(format_error("can't AND a terminal color"));
foreground_color.value.rgb_color &= rhs.foreground_color.value.rgb_color;
}
if (!set_background_color) {
set_background_color = rhs.set_background_color;
background_color = rhs.background_color;
} else if (rhs.set_background_color) {
if (!background_color.is_rgb || !rhs.background_color.is_rgb)
FMT_THROW(format_error("can't AND a terminal color"));
background_color.value.rgb_color &= rhs.background_color.value.rgb_color;
}
ems = static_cast<emphasis>(static_cast<uint8_t>(ems) &
static_cast<uint8_t>(rhs.ems));
return *this;
}
friend FMT_CONSTEXPR text_style operator&(text_style lhs,
const text_style& rhs) {
return lhs &= rhs;
}
FMT_CONSTEXPR bool has_foreground() const FMT_NOEXCEPT {
return set_foreground_color;
}
FMT_CONSTEXPR bool has_background() const FMT_NOEXCEPT {
return set_background_color;
}
FMT_CONSTEXPR bool has_emphasis() const FMT_NOEXCEPT {
return static_cast<uint8_t>(ems) != 0;
}
FMT_CONSTEXPR internal::color_type get_foreground() const FMT_NOEXCEPT {
FMT_ASSERT(has_foreground(), "no foreground specified for this style");
return foreground_color;
}
FMT_CONSTEXPR internal::color_type get_background() const FMT_NOEXCEPT {
FMT_ASSERT(has_background(), "no background specified for this style");
return background_color;
}
FMT_CONSTEXPR emphasis get_emphasis() const FMT_NOEXCEPT {
FMT_ASSERT(has_emphasis(), "no emphasis specified for this style");
return ems;
}
private:
FMT_CONSTEXPR text_style(bool is_foreground,
internal::color_type text_color) FMT_NOEXCEPT
: set_foreground_color(),
set_background_color(),
ems() {
if (is_foreground) {
foreground_color = text_color;
set_foreground_color = true;
} else {
background_color = text_color;
set_background_color = true;
}
}
friend FMT_CONSTEXPR_DECL text_style fg(internal::color_type foreground)
FMT_NOEXCEPT;
friend FMT_CONSTEXPR_DECL text_style bg(internal::color_type background)
FMT_NOEXCEPT;
internal::color_type foreground_color;
internal::color_type background_color;
bool set_foreground_color;
bool set_background_color;
emphasis ems;
};
FMT_CONSTEXPR text_style fg(internal::color_type foreground) FMT_NOEXCEPT {
return text_style(/*is_foreground=*/true, foreground);
}
FMT_CONSTEXPR text_style bg(internal::color_type background) FMT_NOEXCEPT {
return text_style(/*is_foreground=*/false, background);
}
FMT_CONSTEXPR text_style operator|(emphasis lhs, emphasis rhs) FMT_NOEXCEPT {
return text_style(lhs) | rhs;
}
namespace internal {
template <typename Char> struct ansi_color_escape {
FMT_CONSTEXPR ansi_color_escape(internal::color_type text_color,
const char* esc) FMT_NOEXCEPT {
// If we have a terminal color, we need to output another escape code
// sequence.
if (!text_color.is_rgb) {
bool is_background = esc == internal::data::background_color;
uint32_t value = text_color.value.term_color;
// Background ASCII codes are the same as the foreground ones but with
// 10 more.
if (is_background) value += 10u;
std::size_t index = 0;
buffer[index++] = static_cast<Char>('\x1b');
buffer[index++] = static_cast<Char>('[');
if (value >= 100u) {
buffer[index++] = static_cast<Char>('1');
value %= 100u;
}
buffer[index++] = static_cast<Char>('0' + value / 10u);
buffer[index++] = static_cast<Char>('0' + value % 10u);
buffer[index++] = static_cast<Char>('m');
buffer[index++] = static_cast<Char>('\0');
return;
}
for (int i = 0; i < 7; i++) {
buffer[i] = static_cast<Char>(esc[i]);
}
rgb color(text_color.value.rgb_color);
to_esc(color.r, buffer + 7, ';');
to_esc(color.g, buffer + 11, ';');
to_esc(color.b, buffer + 15, 'm');
buffer[19] = static_cast<Char>(0);
}
FMT_CONSTEXPR ansi_color_escape(emphasis em) FMT_NOEXCEPT {
uint8_t em_codes[4] = {};
uint8_t em_bits = static_cast<uint8_t>(em);
if (em_bits & static_cast<uint8_t>(emphasis::bold)) em_codes[0] = 1;
if (em_bits & static_cast<uint8_t>(emphasis::italic)) em_codes[1] = 3;
if (em_bits & static_cast<uint8_t>(emphasis::underline)) em_codes[2] = 4;
if (em_bits & static_cast<uint8_t>(emphasis::strikethrough))
em_codes[3] = 9;
std::size_t index = 0;
for (int i = 0; i < 4; ++i) {
if (!em_codes[i]) continue;
buffer[index++] = static_cast<Char>('\x1b');
buffer[index++] = static_cast<Char>('[');
buffer[index++] = static_cast<Char>('0' + em_codes[i]);
buffer[index++] = static_cast<Char>('m');
}
buffer[index++] = static_cast<Char>(0);
}
FMT_CONSTEXPR operator const Char*() const FMT_NOEXCEPT { return buffer; }
FMT_CONSTEXPR const Char* begin() const FMT_NOEXCEPT { return buffer; }
FMT_CONSTEXPR const Char* end() const FMT_NOEXCEPT {
return buffer + std::char_traits<Char>::length(buffer);
}
private:
Char buffer[7u + 3u * 4u + 1u];
static FMT_CONSTEXPR void to_esc(uint8_t c, Char* out,
char delimiter) FMT_NOEXCEPT {
out[0] = static_cast<Char>('0' + c / 100);
out[1] = static_cast<Char>('0' + c / 10 % 10);
out[2] = static_cast<Char>('0' + c % 10);
out[3] = static_cast<Char>(delimiter);
}
};
template <typename Char>
FMT_CONSTEXPR ansi_color_escape<Char> make_foreground_color(
internal::color_type foreground) FMT_NOEXCEPT {
return ansi_color_escape<Char>(foreground, internal::data::foreground_color);
}
template <typename Char>
FMT_CONSTEXPR ansi_color_escape<Char> make_background_color(
internal::color_type background) FMT_NOEXCEPT {
return ansi_color_escape<Char>(background, internal::data::background_color);
}
template <typename Char>
FMT_CONSTEXPR ansi_color_escape<Char> make_emphasis(emphasis em) FMT_NOEXCEPT {
return ansi_color_escape<Char>(em);
}
template <typename Char>
inline void fputs(const Char* chars, FILE* stream) FMT_NOEXCEPT {
std::fputs(chars, stream);
}
template <>
inline void fputs<wchar_t>(const wchar_t* chars, FILE* stream) FMT_NOEXCEPT {
std::fputws(chars, stream);
}
template <typename Char> inline void reset_color(FILE* stream) FMT_NOEXCEPT {
fputs(internal::data::reset_color, stream);
}
template <> inline void reset_color<wchar_t>(FILE* stream) FMT_NOEXCEPT {
fputs(internal::data::wreset_color, stream);
}
template <typename Char>
inline void reset_color(basic_memory_buffer<Char>& buffer) FMT_NOEXCEPT {
const char* begin = data::reset_color;
const char* end = begin + sizeof(data::reset_color) - 1;
buffer.append(begin, end);
}
template <typename Char>
void vformat_to(basic_memory_buffer<Char>& buf, const text_style& ts,
basic_string_view<Char> format_str,
basic_format_args<buffer_context<Char>> args) {
bool has_style = false;
if (ts.has_emphasis()) {
has_style = true;
auto emphasis = internal::make_emphasis<Char>(ts.get_emphasis());
buf.append(emphasis.begin(), emphasis.end());
}
if (ts.has_foreground()) {
has_style = true;
auto foreground =
internal::make_foreground_color<Char>(ts.get_foreground());
buf.append(foreground.begin(), foreground.end());
}
if (ts.has_background()) {
has_style = true;
auto background =
internal::make_background_color<Char>(ts.get_background());
buf.append(background.begin(), background.end());
}
internal::vformat_to(buf, format_str, args);
if (has_style) internal::reset_color<Char>(buf);
}
} // namespace internal
template <typename S, typename Char = char_t<S>>
void vprint(std::FILE* f, const text_style& ts, const S& format,
basic_format_args<buffer_context<Char>> args) {
basic_memory_buffer<Char> buf;
internal::vformat_to(buf, ts, to_string_view(format), args);
buf.push_back(Char(0));
internal::fputs(buf.data(), f);
}
/**
Formats a string and prints it to the specified file stream using ANSI
escape sequences to specify text formatting.
Example:
fmt::print(fmt::emphasis::bold | fg(fmt::color::red),
"Elapsed time: {0:.2f} seconds", 1.23);
*/
template <typename S, typename... Args,
FMT_ENABLE_IF(internal::is_string<S>::value)>
void print(std::FILE* f, const text_style& ts, const S& format_str,
const Args&... args) {
internal::check_format_string<Args...>(format_str);
using context = buffer_context<char_t<S>>;
format_arg_store<context, Args...> as{args...};
vprint(f, ts, format_str, basic_format_args<context>(as));
}
/**
Formats a string and prints it to stdout using ANSI escape sequences to
specify text formatting.
Example:
fmt::print(fmt::emphasis::bold | fg(fmt::color::red),
"Elapsed time: {0:.2f} seconds", 1.23);
*/
template <typename S, typename... Args,
FMT_ENABLE_IF(internal::is_string<S>::value)>
void print(const text_style& ts, const S& format_str, const Args&... args) {
return print(stdout, ts, format_str, args...);
}
template <typename S, typename Char = char_t<S>>
inline std::basic_string<Char> vformat(
const text_style& ts, const S& format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args) {
basic_memory_buffer<Char> buf;
internal::vformat_to(buf, ts, to_string_view(format_str), args);
return fmt::to_string(buf);
}
/**
\rst
Formats arguments and returns the result as a string using ANSI
escape sequences to specify text formatting.
**Example**::
#include <fmt/color.h>
std::string message = fmt::format(fmt::emphasis::bold | fg(fmt::color::red),
"The answer is {}", 42);
\endrst
*/
template <typename S, typename... Args, typename Char = char_t<S>>
inline std::basic_string<Char> format(const text_style& ts, const S& format_str,
const Args&... args) {
return vformat(ts, to_string_view(format_str),
internal::make_args_checked<Args...>(format_str, args...));
}
FMT_END_NAMESPACE
#endif // FMT_COLOR_H_

View File

@@ -1,595 +0,0 @@
// Formatting library for C++ - experimental format string compilation
//
// Copyright (c) 2012 - present, Victor Zverovich and fmt contributors
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_COMPILE_H_
#define FMT_COMPILE_H_
#include <vector>
#include "format.h"
FMT_BEGIN_NAMESPACE
namespace internal {
// Part of a compiled format string. It can be either literal text or a
// replacement field.
template <typename Char> struct format_part {
enum class kind { arg_index, arg_name, text, replacement };
struct replacement {
arg_ref<Char> arg_id;
dynamic_format_specs<Char> specs;
};
kind part_kind;
union value {
int arg_index;
basic_string_view<Char> str;
replacement repl;
FMT_CONSTEXPR value(int index = 0) : arg_index(index) {}
FMT_CONSTEXPR value(basic_string_view<Char> s) : str(s) {}
FMT_CONSTEXPR value(replacement r) : repl(r) {}
} val;
// Position past the end of the argument id.
const Char* arg_id_end = nullptr;
FMT_CONSTEXPR format_part(kind k = kind::arg_index, value v = {})
: part_kind(k), val(v) {}
static FMT_CONSTEXPR format_part make_arg_index(int index) {
return format_part(kind::arg_index, index);
}
static FMT_CONSTEXPR format_part make_arg_name(basic_string_view<Char> name) {
return format_part(kind::arg_name, name);
}
static FMT_CONSTEXPR format_part make_text(basic_string_view<Char> text) {
return format_part(kind::text, text);
}
static FMT_CONSTEXPR format_part make_replacement(replacement repl) {
return format_part(kind::replacement, repl);
}
};
template <typename Char> struct part_counter {
unsigned num_parts = 0;
FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) {
if (begin != end) ++num_parts;
}
FMT_CONSTEXPR void on_arg_id() { ++num_parts; }
FMT_CONSTEXPR void on_arg_id(int) { ++num_parts; }
FMT_CONSTEXPR void on_arg_id(basic_string_view<Char>) { ++num_parts; }
FMT_CONSTEXPR void on_replacement_field(const Char*) {}
FMT_CONSTEXPR const Char* on_format_specs(const Char* begin,
const Char* end) {
// Find the matching brace.
unsigned brace_counter = 0;
for (; begin != end; ++begin) {
if (*begin == '{') {
++brace_counter;
} else if (*begin == '}') {
if (brace_counter == 0u) break;
--brace_counter;
}
}
return begin;
}
FMT_CONSTEXPR void on_error(const char*) {}
};
// Counts the number of parts in a format string.
template <typename Char>
FMT_CONSTEXPR unsigned count_parts(basic_string_view<Char> format_str) {
part_counter<Char> counter;
parse_format_string<true>(format_str, counter);
return counter.num_parts;
}
template <typename Char, typename PartHandler>
class format_string_compiler : public error_handler {
private:
using part = format_part<Char>;
PartHandler handler_;
part part_;
basic_string_view<Char> format_str_;
basic_format_parse_context<Char> parse_context_;
public:
FMT_CONSTEXPR format_string_compiler(basic_string_view<Char> format_str,
PartHandler handler)
: handler_(handler),
format_str_(format_str),
parse_context_(format_str) {}
FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) {
if (begin != end)
handler_(part::make_text({begin, to_unsigned(end - begin)}));
}
FMT_CONSTEXPR void on_arg_id() {
part_ = part::make_arg_index(parse_context_.next_arg_id());
}
FMT_CONSTEXPR void on_arg_id(int id) {
parse_context_.check_arg_id(id);
part_ = part::make_arg_index(id);
}
FMT_CONSTEXPR void on_arg_id(basic_string_view<Char> id) {
part_ = part::make_arg_name(id);
}
FMT_CONSTEXPR void on_replacement_field(const Char* ptr) {
part_.arg_id_end = ptr;
handler_(part_);
}
FMT_CONSTEXPR const Char* on_format_specs(const Char* begin,
const Char* end) {
auto repl = typename part::replacement();
dynamic_specs_handler<basic_format_parse_context<Char>> handler(
repl.specs, parse_context_);
auto it = parse_format_specs(begin, end, handler);
if (*it != '}') on_error("missing '}' in format string");
repl.arg_id = part_.part_kind == part::kind::arg_index
? arg_ref<Char>(part_.val.arg_index)
: arg_ref<Char>(part_.val.str);
auto part = part::make_replacement(repl);
part.arg_id_end = begin;
handler_(part);
return it;
}
};
// Compiles a format string and invokes handler(part) for each parsed part.
template <bool IS_CONSTEXPR, typename Char, typename PartHandler>
FMT_CONSTEXPR void compile_format_string(basic_string_view<Char> format_str,
PartHandler handler) {
parse_format_string<IS_CONSTEXPR>(
format_str,
format_string_compiler<Char, PartHandler>(format_str, handler));
}
template <typename Range, typename Context, typename Id>
void format_arg(
basic_format_parse_context<typename Range::value_type>& parse_ctx,
Context& ctx, Id arg_id) {
ctx.advance_to(
visit_format_arg(arg_formatter<Range>(ctx, &parse_ctx), ctx.arg(arg_id)));
}
// vformat_to is defined in a subnamespace to prevent ADL.
namespace cf {
template <typename Context, typename Range, typename CompiledFormat>
auto vformat_to(Range out, CompiledFormat& cf, basic_format_args<Context> args)
-> typename Context::iterator {
using char_type = typename Context::char_type;
basic_format_parse_context<char_type> parse_ctx(
to_string_view(cf.format_str_));
Context ctx(out.begin(), args);
const auto& parts = cf.parts();
for (auto part_it = std::begin(parts); part_it != std::end(parts);
++part_it) {
const auto& part = *part_it;
const auto& value = part.val;
using format_part_t = format_part<char_type>;
switch (part.part_kind) {
case format_part_t::kind::text: {
const auto text = value.str;
auto output = ctx.out();
auto&& it = reserve(output, text.size());
it = std::copy_n(text.begin(), text.size(), it);
ctx.advance_to(output);
break;
}
case format_part_t::kind::arg_index:
advance_to(parse_ctx, part.arg_id_end);
internal::format_arg<Range>(parse_ctx, ctx, value.arg_index);
break;
case format_part_t::kind::arg_name:
advance_to(parse_ctx, part.arg_id_end);
internal::format_arg<Range>(parse_ctx, ctx, value.str);
break;
case format_part_t::kind::replacement: {
const auto& arg_id_value = value.repl.arg_id.val;
const auto arg = value.repl.arg_id.kind == arg_id_kind::index
? ctx.arg(arg_id_value.index)
: ctx.arg(arg_id_value.name);
auto specs = value.repl.specs;
handle_dynamic_spec<width_checker>(specs.width, specs.width_ref, ctx);
handle_dynamic_spec<precision_checker>(specs.precision,
specs.precision_ref, ctx);
error_handler h;
numeric_specs_checker<error_handler> checker(h, arg.type());
if (specs.align == align::numeric) checker.require_numeric_argument();
if (specs.sign != sign::none) checker.check_sign();
if (specs.alt) checker.require_numeric_argument();
if (specs.precision >= 0) checker.check_precision();
advance_to(parse_ctx, part.arg_id_end);
ctx.advance_to(
visit_format_arg(arg_formatter<Range>(ctx, nullptr, &specs), arg));
break;
}
}
}
return ctx.out();
}
} // namespace cf
struct basic_compiled_format {};
template <typename S, typename = void>
struct compiled_format_base : basic_compiled_format {
using char_type = char_t<S>;
using parts_container = std::vector<internal::format_part<char_type>>;
parts_container compiled_parts;
explicit compiled_format_base(basic_string_view<char_type> format_str) {
compile_format_string<false>(format_str,
[this](const format_part<char_type>& part) {
compiled_parts.push_back(part);
});
}
const parts_container& parts() const { return compiled_parts; }
};
template <typename Char, unsigned N> struct format_part_array {
format_part<Char> data[N] = {};
FMT_CONSTEXPR format_part_array() = default;
};
template <typename Char, unsigned N>
FMT_CONSTEXPR format_part_array<Char, N> compile_to_parts(
basic_string_view<Char> format_str) {
format_part_array<Char, N> parts;
unsigned counter = 0;
// This is not a lambda for compatibility with older compilers.
struct {
format_part<Char>* parts;
unsigned* counter;
FMT_CONSTEXPR void operator()(const format_part<Char>& part) {
parts[(*counter)++] = part;
}
} collector{parts.data, &counter};
compile_format_string<true>(format_str, collector);
if (counter < N) {
parts.data[counter] =
format_part<Char>::make_text(basic_string_view<Char>());
}
return parts;
}
template <typename T> constexpr const T& constexpr_max(const T& a, const T& b) {
return (a < b) ? b : a;
}
template <typename S>
struct compiled_format_base<S, enable_if_t<is_compile_string<S>::value>>
: basic_compiled_format {
using char_type = char_t<S>;
FMT_CONSTEXPR explicit compiled_format_base(basic_string_view<char_type>) {}
// Workaround for old compilers. Format string compilation will not be
// performed there anyway.
#if FMT_USE_CONSTEXPR
static FMT_CONSTEXPR_DECL const unsigned num_format_parts =
constexpr_max(count_parts(to_string_view(S())), 1u);
#else
static const unsigned num_format_parts = 1;
#endif
using parts_container = format_part<char_type>[num_format_parts];
const parts_container& parts() const {
static FMT_CONSTEXPR_DECL const auto compiled_parts =
compile_to_parts<char_type, num_format_parts>(
internal::to_string_view(S()));
return compiled_parts.data;
}
};
template <typename S, typename... Args>
class compiled_format : private compiled_format_base<S> {
public:
using typename compiled_format_base<S>::char_type;
private:
basic_string_view<char_type> format_str_;
template <typename Context, typename Range, typename CompiledFormat>
friend auto cf::vformat_to(Range out, CompiledFormat& cf,
basic_format_args<Context> args) ->
typename Context::iterator;
public:
compiled_format() = delete;
explicit constexpr compiled_format(basic_string_view<char_type> format_str)
: compiled_format_base<S>(format_str), format_str_(format_str) {}
};
#ifdef __cpp_if_constexpr
template <typename... Args> struct type_list {};
// Returns a reference to the argument at index N from [first, rest...].
template <int N, typename T, typename... Args>
constexpr const auto& get(const T& first, const Args&... rest) {
static_assert(N < 1 + sizeof...(Args), "index is out of bounds");
if constexpr (N == 0)
return first;
else
return get<N - 1>(rest...);
}
template <int N, typename> struct get_type_impl;
template <int N, typename... Args> struct get_type_impl<N, type_list<Args...>> {
using type = remove_cvref_t<decltype(get<N>(std::declval<Args>()...))>;
};
template <int N, typename T>
using get_type = typename get_type_impl<N, T>::type;
template <typename T> struct is_compiled_format : std::false_type {};
template <typename Char> struct text {
basic_string_view<Char> data;
using char_type = Char;
template <typename OutputIt, typename... Args>
OutputIt format(OutputIt out, const Args&...) const {
// TODO: reserve
return copy_str<Char>(data.begin(), data.end(), out);
}
};
template <typename Char>
struct is_compiled_format<text<Char>> : std::true_type {};
template <typename Char>
constexpr text<Char> make_text(basic_string_view<Char> s, size_t pos,
size_t size) {
return {{&s[pos], size}};
}
template <typename Char, typename OutputIt, typename T,
std::enable_if_t<std::is_integral_v<T>, int> = 0>
OutputIt format_default(OutputIt out, T value) {
// TODO: reserve
format_int fi(value);
return std::copy(fi.data(), fi.data() + fi.size(), out);
}
template <typename Char, typename OutputIt>
OutputIt format_default(OutputIt out, double value) {
writer w(out);
w.write(value);
return w.out();
}
template <typename Char, typename OutputIt>
OutputIt format_default(OutputIt out, Char value) {
*out++ = value;
return out;
}
template <typename Char, typename OutputIt>
OutputIt format_default(OutputIt out, const Char* value) {
auto length = std::char_traits<Char>::length(value);
return copy_str<Char>(value, value + length, out);
}
// A replacement field that refers to argument N.
template <typename Char, typename T, int N> struct field {
using char_type = Char;
template <typename OutputIt, typename... Args>
OutputIt format(OutputIt out, const Args&... args) const {
// This ensures that the argument type is convertile to `const T&`.
const T& arg = get<N>(args...);
return format_default<Char>(out, arg);
}
};
template <typename Char, typename T, int N>
struct is_compiled_format<field<Char, T, N>> : std::true_type {};
template <typename L, typename R> struct concat {
L lhs;
R rhs;
using char_type = typename L::char_type;
template <typename OutputIt, typename... Args>
OutputIt format(OutputIt out, const Args&... args) const {
out = lhs.format(out, args...);
return rhs.format(out, args...);
}
};
template <typename L, typename R>
struct is_compiled_format<concat<L, R>> : std::true_type {};
template <typename L, typename R>
constexpr concat<L, R> make_concat(L lhs, R rhs) {
return {lhs, rhs};
}
struct unknown_format {};
template <typename Char>
constexpr size_t parse_text(basic_string_view<Char> str, size_t pos) {
for (size_t size = str.size(); pos != size; ++pos) {
if (str[pos] == '{' || str[pos] == '}') break;
}
return pos;
}
template <typename Args, size_t POS, int ID, typename S>
constexpr auto compile_format_string(S format_str);
template <typename Args, size_t POS, int ID, typename T, typename S>
constexpr auto parse_tail(T head, S format_str) {
if constexpr (POS != to_string_view(format_str).size()) {
constexpr auto tail = compile_format_string<Args, POS, ID>(format_str);
if constexpr (std::is_same<remove_cvref_t<decltype(tail)>,
unknown_format>())
return tail;
else
return make_concat(head, tail);
} else {
return head;
}
}
// Compiles a non-empty format string and returns the compiled representation
// or unknown_format() on unrecognized input.
template <typename Args, size_t POS, int ID, typename S>
constexpr auto compile_format_string(S format_str) {
using char_type = typename S::char_type;
constexpr basic_string_view<char_type> str = format_str;
if constexpr (str[POS] == '{') {
if (POS + 1 == str.size())
throw format_error("unmatched '{' in format string");
if constexpr (str[POS + 1] == '{') {
return parse_tail<Args, POS + 2, ID>(make_text(str, POS, 1), format_str);
} else if constexpr (str[POS + 1] == '}') {
using type = get_type<ID, Args>;
if constexpr (std::is_same<type, int>::value) {
return parse_tail<Args, POS + 2, ID + 1>(field<char_type, type, ID>(),
format_str);
} else {
return unknown_format();
}
} else {
return unknown_format();
}
} else if constexpr (str[POS] == '}') {
if (POS + 1 == str.size())
throw format_error("unmatched '}' in format string");
return parse_tail<Args, POS + 2, ID>(make_text(str, POS, 1), format_str);
} else {
constexpr auto end = parse_text(str, POS + 1);
return parse_tail<Args, end, ID>(make_text(str, POS, end - POS),
format_str);
}
}
#endif // __cpp_if_constexpr
} // namespace internal
#if FMT_USE_CONSTEXPR
# ifdef __cpp_if_constexpr
template <typename... Args, typename S,
FMT_ENABLE_IF(is_compile_string<S>::value)>
constexpr auto compile(S format_str) {
constexpr basic_string_view<typename S::char_type> str = format_str;
if constexpr (str.size() == 0) {
return internal::make_text(str, 0, 0);
} else {
constexpr auto result =
internal::compile_format_string<internal::type_list<Args...>, 0, 0>(
format_str);
if constexpr (std::is_same<remove_cvref_t<decltype(result)>,
internal::unknown_format>()) {
return internal::compiled_format<S, Args...>(to_string_view(format_str));
} else {
return result;
}
}
}
template <typename CompiledFormat, typename... Args,
typename Char = typename CompiledFormat::char_type,
FMT_ENABLE_IF(internal::is_compiled_format<CompiledFormat>::value)>
std::basic_string<Char> format(const CompiledFormat& cf, const Args&... args) {
basic_memory_buffer<Char> buffer;
cf.format(std::back_inserter(buffer), args...);
return to_string(buffer);
}
template <typename OutputIt, typename CompiledFormat, typename... Args,
FMT_ENABLE_IF(internal::is_compiled_format<CompiledFormat>::value)>
OutputIt format_to(OutputIt out, const CompiledFormat& cf,
const Args&... args) {
return cf.format(out, args...);
}
# else
template <typename... Args, typename S,
FMT_ENABLE_IF(is_compile_string<S>::value)>
constexpr auto compile(S format_str) -> internal::compiled_format<S, Args...> {
return internal::compiled_format<S, Args...>(to_string_view(format_str));
}
# endif // __cpp_if_constexpr
#endif // FMT_USE_CONSTEXPR
// Compiles the format string which must be a string literal.
template <typename... Args, typename Char, size_t N>
auto compile(const Char (&format_str)[N])
-> internal::compiled_format<const Char*, Args...> {
return internal::compiled_format<const Char*, Args...>(
basic_string_view<Char>(format_str, N - 1));
}
template <typename CompiledFormat, typename... Args,
typename Char = typename CompiledFormat::char_type,
FMT_ENABLE_IF(std::is_base_of<internal::basic_compiled_format,
CompiledFormat>::value)>
std::basic_string<Char> format(const CompiledFormat& cf, const Args&... args) {
basic_memory_buffer<Char> buffer;
using range = buffer_range<Char>;
using context = buffer_context<Char>;
internal::cf::vformat_to<context>(range(buffer), cf,
make_format_args<context>(args...));
return to_string(buffer);
}
template <typename OutputIt, typename CompiledFormat, typename... Args,
FMT_ENABLE_IF(std::is_base_of<internal::basic_compiled_format,
CompiledFormat>::value)>
OutputIt format_to(OutputIt out, const CompiledFormat& cf,
const Args&... args) {
using char_type = typename CompiledFormat::char_type;
using range = internal::output_range<OutputIt, char_type>;
using context = format_context_t<OutputIt, char_type>;
return internal::cf::vformat_to<context>(range(out), cf,
make_format_args<context>(args...));
}
template <typename OutputIt, typename CompiledFormat, typename... Args,
FMT_ENABLE_IF(internal::is_output_iterator<OutputIt>::value)>
format_to_n_result<OutputIt> format_to_n(OutputIt out, size_t n,
const CompiledFormat& cf,
const Args&... args) {
auto it =
format_to(internal::truncating_iterator<OutputIt>(out, n), cf, args...);
return {it.base(), it.count()};
}
template <typename CompiledFormat, typename... Args>
std::size_t formatted_size(const CompiledFormat& cf, const Args&... args) {
return format_to(internal::counting_iterator(), cf, args...).count();
}
FMT_END_NAMESPACE
#endif // FMT_COMPILE_H_

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,78 +0,0 @@
// Formatting library for C++ - std::locale support
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_LOCALE_H_
#define FMT_LOCALE_H_
#include <locale>
#include "format.h"
FMT_BEGIN_NAMESPACE
namespace internal {
template <typename Char>
typename buffer_context<Char>::iterator vformat_to(
const std::locale& loc, buffer<Char>& buf,
basic_string_view<Char> format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args) {
using range = buffer_range<Char>;
return vformat_to<arg_formatter<range>>(buf, to_string_view(format_str), args,
internal::locale_ref(loc));
}
template <typename Char>
std::basic_string<Char> vformat(
const std::locale& loc, basic_string_view<Char> format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args) {
basic_memory_buffer<Char> buffer;
internal::vformat_to(loc, buffer, format_str, args);
return fmt::to_string(buffer);
}
} // namespace internal
template <typename S, typename Char = char_t<S>>
inline std::basic_string<Char> vformat(
const std::locale& loc, const S& format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args) {
return internal::vformat(loc, to_string_view(format_str), args);
}
template <typename S, typename... Args, typename Char = char_t<S>>
inline std::basic_string<Char> format(const std::locale& loc,
const S& format_str, Args&&... args) {
return internal::vformat(
loc, to_string_view(format_str),
internal::make_args_checked<Args...>(format_str, args...));
}
template <typename S, typename OutputIt, typename... Args,
typename Char = enable_if_t<
internal::is_output_iterator<OutputIt>::value, char_t<S>>>
inline OutputIt vformat_to(
OutputIt out, const std::locale& loc, const S& format_str,
format_args_t<type_identity_t<OutputIt>, Char> args) {
using range = internal::output_range<OutputIt, Char>;
return vformat_to<arg_formatter<range>>(
range(out), to_string_view(format_str), args, internal::locale_ref(loc));
}
template <typename OutputIt, typename S, typename... Args,
FMT_ENABLE_IF(internal::is_output_iterator<OutputIt>::value&&
internal::is_string<S>::value)>
inline OutputIt format_to(OutputIt out, const std::locale& loc,
const S& format_str, Args&&... args) {
internal::check_format_string<Args...>(format_str);
using context = format_context_t<OutputIt, char_t<S>>;
format_arg_store<context, Args...> as{args...};
return vformat_to(out, loc, to_string_view(format_str),
basic_format_args<context>(as));
}
FMT_END_NAMESPACE
#endif // FMT_LOCALE_H_

View File

@@ -1,392 +0,0 @@
// Formatting library for C++ - optional OS-specific functionality
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_OS_H_
#define FMT_OS_H_
#if defined(__MINGW32__) || defined(__CYGWIN__)
// Workaround MinGW bug https://sourceforge.net/p/mingw/bugs/2024/.
# undef __STRICT_ANSI__
#endif
#include <cerrno>
#include <clocale> // for locale_t
#include <cstddef>
#include <cstdio>
#include <cstdlib> // for strtod_l
#if defined __APPLE__ || defined(__FreeBSD__)
# include <xlocale.h> // for LC_NUMERIC_MASK on OS X
#endif
#include "format.h"
// UWP doesn't provide _pipe.
#if FMT_HAS_INCLUDE("winapifamily.h")
# include <winapifamily.h>
#endif
#if FMT_HAS_INCLUDE("fcntl.h") && \
(!defined(WINAPI_FAMILY) || (WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP))
# include <fcntl.h> // for O_RDONLY
# define FMT_USE_FCNTL 1
#else
# define FMT_USE_FCNTL 0
#endif
#ifndef FMT_POSIX
# if defined(_WIN32) && !defined(__MINGW32__)
// Fix warnings about deprecated symbols.
# define FMT_POSIX(call) _##call
# else
# define FMT_POSIX(call) call
# endif
#endif
// Calls to system functions are wrapped in FMT_SYSTEM for testability.
#ifdef FMT_SYSTEM
# define FMT_POSIX_CALL(call) FMT_SYSTEM(call)
#else
# define FMT_SYSTEM(call) call
# ifdef _WIN32
// Fix warnings about deprecated symbols.
# define FMT_POSIX_CALL(call) ::_##call
# else
# define FMT_POSIX_CALL(call) ::call
# endif
#endif
// Retries the expression while it evaluates to error_result and errno
// equals to EINTR.
#ifndef _WIN32
# define FMT_RETRY_VAL(result, expression, error_result) \
do { \
(result) = (expression); \
} while ((result) == (error_result) && errno == EINTR)
#else
# define FMT_RETRY_VAL(result, expression, error_result) result = (expression)
#endif
#define FMT_RETRY(result, expression) FMT_RETRY_VAL(result, expression, -1)
FMT_BEGIN_NAMESPACE
/**
\rst
A reference to a null-terminated string. It can be constructed from a C
string or ``std::string``.
You can use one of the following type aliases for common character types:
+---------------+-----------------------------+
| Type | Definition |
+===============+=============================+
| cstring_view | basic_cstring_view<char> |
+---------------+-----------------------------+
| wcstring_view | basic_cstring_view<wchar_t> |
+---------------+-----------------------------+
This class is most useful as a parameter type to allow passing
different types of strings to a function, for example::
template <typename... Args>
std::string format(cstring_view format_str, const Args & ... args);
format("{}", 42);
format(std::string("{}"), 42);
\endrst
*/
template <typename Char> class basic_cstring_view {
private:
const Char* data_;
public:
/** Constructs a string reference object from a C string. */
basic_cstring_view(const Char* s) : data_(s) {}
/**
\rst
Constructs a string reference from an ``std::string`` object.
\endrst
*/
basic_cstring_view(const std::basic_string<Char>& s) : data_(s.c_str()) {}
/** Returns the pointer to a C string. */
const Char* c_str() const { return data_; }
};
using cstring_view = basic_cstring_view<char>;
using wcstring_view = basic_cstring_view<wchar_t>;
// An error code.
class error_code {
private:
int value_;
public:
explicit error_code(int value = 0) FMT_NOEXCEPT : value_(value) {}
int get() const FMT_NOEXCEPT { return value_; }
};
#ifdef _WIN32
namespace internal {
// A converter from UTF-16 to UTF-8.
// It is only provided for Windows since other systems support UTF-8 natively.
class utf16_to_utf8 {
private:
memory_buffer buffer_;
public:
utf16_to_utf8() {}
FMT_API explicit utf16_to_utf8(wstring_view s);
operator string_view() const { return string_view(&buffer_[0], size()); }
size_t size() const { return buffer_.size() - 1; }
const char* c_str() const { return &buffer_[0]; }
std::string str() const { return std::string(&buffer_[0], size()); }
// Performs conversion returning a system error code instead of
// throwing exception on conversion error. This method may still throw
// in case of memory allocation error.
FMT_API int convert(wstring_view s);
};
FMT_API void format_windows_error(buffer<char>& out, int error_code,
string_view message) FMT_NOEXCEPT;
} // namespace internal
/** A Windows error. */
class windows_error : public system_error {
private:
FMT_API void init(int error_code, string_view format_str, format_args args);
public:
/**
\rst
Constructs a :class:`fmt::windows_error` object with the description
of the form
.. parsed-literal::
*<message>*: *<system-message>*
where *<message>* is the formatted message and *<system-message>* is the
system message corresponding to the error code.
*error_code* is a Windows error code as given by ``GetLastError``.
If *error_code* is not a valid error code such as -1, the system message
will look like "error -1".
**Example**::
// This throws a windows_error with the description
// cannot open file 'madeup': The system cannot find the file specified.
// or similar (system message may vary).
const char *filename = "madeup";
LPOFSTRUCT of = LPOFSTRUCT();
HFILE file = OpenFile(filename, &of, OF_READ);
if (file == HFILE_ERROR) {
throw fmt::windows_error(GetLastError(),
"cannot open file '{}'", filename);
}
\endrst
*/
template <typename... Args>
windows_error(int error_code, string_view message, const Args&... args) {
init(error_code, message, make_format_args(args...));
}
};
// Reports a Windows error without throwing an exception.
// Can be used to report errors from destructors.
FMT_API void report_windows_error(int error_code,
string_view message) FMT_NOEXCEPT;
#endif // _WIN32
// A buffered file.
class buffered_file {
private:
FILE* file_;
friend class file;
explicit buffered_file(FILE* f) : file_(f) {}
public:
buffered_file(const buffered_file&) = delete;
void operator=(const buffered_file&) = delete;
// Constructs a buffered_file object which doesn't represent any file.
buffered_file() FMT_NOEXCEPT : file_(nullptr) {}
// Destroys the object closing the file it represents if any.
FMT_API ~buffered_file() FMT_NOEXCEPT;
public:
buffered_file(buffered_file&& other) FMT_NOEXCEPT : file_(other.file_) {
other.file_ = nullptr;
}
buffered_file& operator=(buffered_file&& other) {
close();
file_ = other.file_;
other.file_ = nullptr;
return *this;
}
// Opens a file.
FMT_API buffered_file(cstring_view filename, cstring_view mode);
// Closes the file.
FMT_API void close();
// Returns the pointer to a FILE object representing this file.
FILE* get() const FMT_NOEXCEPT { return file_; }
// We place parentheses around fileno to workaround a bug in some versions
// of MinGW that define fileno as a macro.
FMT_API int(fileno)() const;
void vprint(string_view format_str, format_args args) {
fmt::vprint(file_, format_str, args);
}
template <typename... Args>
inline void print(string_view format_str, const Args&... args) {
vprint(format_str, make_format_args(args...));
}
};
#if FMT_USE_FCNTL
// A file. Closed file is represented by a file object with descriptor -1.
// Methods that are not declared with FMT_NOEXCEPT may throw
// fmt::system_error in case of failure. Note that some errors such as
// closing the file multiple times will cause a crash on Windows rather
// than an exception. You can get standard behavior by overriding the
// invalid parameter handler with _set_invalid_parameter_handler.
class file {
private:
int fd_; // File descriptor.
// Constructs a file object with a given descriptor.
explicit file(int fd) : fd_(fd) {}
public:
// Possible values for the oflag argument to the constructor.
enum {
RDONLY = FMT_POSIX(O_RDONLY), // Open for reading only.
WRONLY = FMT_POSIX(O_WRONLY), // Open for writing only.
RDWR = FMT_POSIX(O_RDWR) // Open for reading and writing.
};
// Constructs a file object which doesn't represent any file.
file() FMT_NOEXCEPT : fd_(-1) {}
// Opens a file and constructs a file object representing this file.
FMT_API file(cstring_view path, int oflag);
public:
file(const file&) = delete;
void operator=(const file&) = delete;
file(file&& other) FMT_NOEXCEPT : fd_(other.fd_) { other.fd_ = -1; }
file& operator=(file&& other) FMT_NOEXCEPT {
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
// Destroys the object closing the file it represents if any.
FMT_API ~file() FMT_NOEXCEPT;
// Returns the file descriptor.
int descriptor() const FMT_NOEXCEPT { return fd_; }
// Closes the file.
FMT_API void close();
// Returns the file size. The size has signed type for consistency with
// stat::st_size.
FMT_API long long size() const;
// Attempts to read count bytes from the file into the specified buffer.
FMT_API std::size_t read(void* buffer, std::size_t count);
// Attempts to write count bytes from the specified buffer to the file.
FMT_API std::size_t write(const void* buffer, std::size_t count);
// Duplicates a file descriptor with the dup function and returns
// the duplicate as a file object.
FMT_API static file dup(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd, error_code& ec) FMT_NOEXCEPT;
// Creates a pipe setting up read_end and write_end file objects for reading
// and writing respectively.
FMT_API static void pipe(file& read_end, file& write_end);
// Creates a buffered_file object associated with this file and detaches
// this file object from the file.
FMT_API buffered_file fdopen(const char* mode);
};
// Returns the memory page size.
long getpagesize();
#endif // FMT_USE_FCNTL
#ifdef FMT_LOCALE
// A "C" numeric locale.
class locale {
private:
# ifdef _WIN32
using locale_t = _locale_t;
static void freelocale(locale_t loc) { _free_locale(loc); }
static double strtod_l(const char* nptr, char** endptr, _locale_t loc) {
return _strtod_l(nptr, endptr, loc);
}
# endif
locale_t locale_;
public:
using type = locale_t;
locale(const locale&) = delete;
void operator=(const locale&) = delete;
locale() {
# ifndef _WIN32
locale_ = FMT_SYSTEM(newlocale(LC_NUMERIC_MASK, "C", nullptr));
# else
locale_ = _create_locale(LC_NUMERIC, "C");
# endif
if (!locale_) FMT_THROW(system_error(errno, "cannot create locale"));
}
~locale() { freelocale(locale_); }
type get() const { return locale_; }
// Converts string to floating-point number and advances str past the end
// of the parsed input.
double strtod(const char*& str) const {
char* end = nullptr;
double result = strtod_l(str, &end, locale_);
str = end;
return result;
}
};
using Locale FMT_DEPRECATED_ALIAS = locale;
#endif // FMT_LOCALE
FMT_END_NAMESPACE
#endif // FMT_OS_H_

View File

@@ -1,143 +0,0 @@
// Formatting library for C++ - std::ostream support
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_OSTREAM_H_
#define FMT_OSTREAM_H_
#include <ostream>
#include "format.h"
FMT_BEGIN_NAMESPACE
namespace internal {
template <class Char> class formatbuf : public std::basic_streambuf<Char> {
private:
using int_type = typename std::basic_streambuf<Char>::int_type;
using traits_type = typename std::basic_streambuf<Char>::traits_type;
buffer<Char>& buffer_;
public:
formatbuf(buffer<Char>& buf) : buffer_(buf) {}
protected:
// The put-area is actually always empty. This makes the implementation
// simpler and has the advantage that the streambuf and the buffer are always
// in sync and sputc never writes into uninitialized memory. The obvious
// disadvantage is that each call to sputc always results in a (virtual) call
// to overflow. There is no disadvantage here for sputn since this always
// results in a call to xsputn.
int_type overflow(int_type ch = traits_type::eof()) FMT_OVERRIDE {
if (!traits_type::eq_int_type(ch, traits_type::eof()))
buffer_.push_back(static_cast<Char>(ch));
return ch;
}
std::streamsize xsputn(const Char* s, std::streamsize count) FMT_OVERRIDE {
buffer_.append(s, s + count);
return count;
}
};
template <typename Char> struct test_stream : std::basic_ostream<Char> {
private:
// Hide all operator<< from std::basic_ostream<Char>.
void_t<> operator<<(null<>);
void_t<> operator<<(const Char*);
template <typename T, FMT_ENABLE_IF(std::is_convertible<T, int>::value &&
!std::is_enum<T>::value)>
void_t<> operator<<(T);
};
// Checks if T has a user-defined operator<< (e.g. not a member of
// std::ostream).
template <typename T, typename Char> class is_streamable {
private:
template <typename U>
static bool_constant<!std::is_same<decltype(std::declval<test_stream<Char>&>()
<< std::declval<U>()),
void_t<>>::value>
test(int);
template <typename> static std::false_type test(...);
using result = decltype(test<T>(0));
public:
static const bool value = result::value;
};
// Write the content of buf to os.
template <typename Char>
void write(std::basic_ostream<Char>& os, buffer<Char>& buf) {
const Char* buf_data = buf.data();
using unsigned_streamsize = std::make_unsigned<std::streamsize>::type;
unsigned_streamsize size = buf.size();
unsigned_streamsize max_size = to_unsigned(max_value<std::streamsize>());
do {
unsigned_streamsize n = size <= max_size ? size : max_size;
os.write(buf_data, static_cast<std::streamsize>(n));
buf_data += n;
size -= n;
} while (size != 0);
}
template <typename Char, typename T>
void format_value(buffer<Char>& buf, const T& value,
locale_ref loc = locale_ref()) {
formatbuf<Char> format_buf(buf);
std::basic_ostream<Char> output(&format_buf);
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
if (loc) output.imbue(loc.get<std::locale>());
#endif
output.exceptions(std::ios_base::failbit | std::ios_base::badbit);
output << value;
buf.resize(buf.size());
}
// Formats an object of type T that has an overloaded ostream operator<<.
template <typename T, typename Char>
struct fallback_formatter<T, Char, enable_if_t<is_streamable<T, Char>::value>>
: formatter<basic_string_view<Char>, Char> {
template <typename Context>
auto format(const T& value, Context& ctx) -> decltype(ctx.out()) {
basic_memory_buffer<Char> buffer;
format_value(buffer, value, ctx.locale());
basic_string_view<Char> str(buffer.data(), buffer.size());
return formatter<basic_string_view<Char>, Char>::format(str, ctx);
}
};
} // namespace internal
template <typename Char>
void vprint(std::basic_ostream<Char>& os, basic_string_view<Char> format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args) {
basic_memory_buffer<Char> buffer;
internal::vformat_to(buffer, format_str, args);
internal::write(os, buffer);
}
/**
\rst
Prints formatted data to the stream *os*.
**Example**::
fmt::print(cerr, "Don't {}!", "panic");
\endrst
*/
template <typename S, typename... Args,
typename Char = enable_if_t<internal::is_string<S>::value, char_t<S>>>
void print(std::basic_ostream<Char>& os, const S& format_str, Args&&... args) {
vprint(os, to_string_view(format_str),
internal::make_args_checked<Args...>(format_str, args...));
}
FMT_END_NAMESPACE
#endif // FMT_OSTREAM_H_

View File

@@ -1,2 +0,0 @@
#include "os.h"
#warning "fmt/posix.h is deprecated; use fmt/os.h instead"

View File

@@ -1,721 +0,0 @@
// Formatting library for C++ - legacy printf implementation
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_PRINTF_H_
#define FMT_PRINTF_H_
#include <algorithm> // std::max
#include <limits> // std::numeric_limits
#include "ostream.h"
FMT_BEGIN_NAMESPACE
namespace internal {
// Checks if a value fits in int - used to avoid warnings about comparing
// signed and unsigned integers.
template <bool IsSigned> struct int_checker {
template <typename T> static bool fits_in_int(T value) {
unsigned max = max_value<int>();
return value <= max;
}
static bool fits_in_int(bool) { return true; }
};
template <> struct int_checker<true> {
template <typename T> static bool fits_in_int(T value) {
return value >= (std::numeric_limits<int>::min)() &&
value <= max_value<int>();
}
static bool fits_in_int(int) { return true; }
};
class printf_precision_handler {
public:
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
int operator()(T value) {
if (!int_checker<std::numeric_limits<T>::is_signed>::fits_in_int(value))
FMT_THROW(format_error("number is too big"));
return (std::max)(static_cast<int>(value), 0);
}
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
int operator()(T) {
FMT_THROW(format_error("precision is not integer"));
return 0;
}
};
// An argument visitor that returns true iff arg is a zero integer.
class is_zero_int {
public:
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
bool operator()(T value) {
return value == 0;
}
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
bool operator()(T) {
return false;
}
};
template <typename T> struct make_unsigned_or_bool : std::make_unsigned<T> {};
template <> struct make_unsigned_or_bool<bool> { using type = bool; };
template <typename T, typename Context> class arg_converter {
private:
using char_type = typename Context::char_type;
basic_format_arg<Context>& arg_;
char_type type_;
public:
arg_converter(basic_format_arg<Context>& arg, char_type type)
: arg_(arg), type_(type) {}
void operator()(bool value) {
if (type_ != 's') operator()<bool>(value);
}
template <typename U, FMT_ENABLE_IF(std::is_integral<U>::value)>
void operator()(U value) {
bool is_signed = type_ == 'd' || type_ == 'i';
using target_type = conditional_t<std::is_same<T, void>::value, U, T>;
if (const_check(sizeof(target_type) <= sizeof(int))) {
// Extra casts are used to silence warnings.
if (is_signed) {
arg_ = internal::make_arg<Context>(
static_cast<int>(static_cast<target_type>(value)));
} else {
using unsigned_type = typename make_unsigned_or_bool<target_type>::type;
arg_ = internal::make_arg<Context>(
static_cast<unsigned>(static_cast<unsigned_type>(value)));
}
} else {
if (is_signed) {
// glibc's printf doesn't sign extend arguments of smaller types:
// std::printf("%lld", -42); // prints "4294967254"
// but we don't have to do the same because it's a UB.
arg_ = internal::make_arg<Context>(static_cast<long long>(value));
} else {
arg_ = internal::make_arg<Context>(
static_cast<typename make_unsigned_or_bool<U>::type>(value));
}
}
}
template <typename U, FMT_ENABLE_IF(!std::is_integral<U>::value)>
void operator()(U) {} // No conversion needed for non-integral types.
};
// Converts an integer argument to T for printf, if T is an integral type.
// If T is void, the argument is converted to corresponding signed or unsigned
// type depending on the type specifier: 'd' and 'i' - signed, other -
// unsigned).
template <typename T, typename Context, typename Char>
void convert_arg(basic_format_arg<Context>& arg, Char type) {
visit_format_arg(arg_converter<T, Context>(arg, type), arg);
}
// Converts an integer argument to char for printf.
template <typename Context> class char_converter {
private:
basic_format_arg<Context>& arg_;
public:
explicit char_converter(basic_format_arg<Context>& arg) : arg_(arg) {}
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
void operator()(T value) {
arg_ = internal::make_arg<Context>(
static_cast<typename Context::char_type>(value));
}
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
void operator()(T) {} // No conversion needed for non-integral types.
};
// Checks if an argument is a valid printf width specifier and sets
// left alignment if it is negative.
template <typename Char> class printf_width_handler {
private:
using format_specs = basic_format_specs<Char>;
format_specs& specs_;
public:
explicit printf_width_handler(format_specs& specs) : specs_(specs) {}
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
unsigned operator()(T value) {
auto width = static_cast<uint32_or_64_or_128_t<T>>(value);
if (internal::is_negative(value)) {
specs_.align = align::left;
width = 0 - width;
}
unsigned int_max = max_value<int>();
if (width > int_max) FMT_THROW(format_error("number is too big"));
return static_cast<unsigned>(width);
}
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
unsigned operator()(T) {
FMT_THROW(format_error("width is not integer"));
return 0;
}
};
template <typename Char, typename Context>
void printf(buffer<Char>& buf, basic_string_view<Char> format,
basic_format_args<Context> args) {
Context(std::back_inserter(buf), format, args).format();
}
template <typename OutputIt, typename Char, typename Context>
internal::truncating_iterator<OutputIt> printf(
internal::truncating_iterator<OutputIt> it, basic_string_view<Char> format,
basic_format_args<Context> args) {
return Context(it, format, args).format();
}
} // namespace internal
using internal::printf; // For printing into memory_buffer.
template <typename Range> class printf_arg_formatter;
template <typename OutputIt, typename Char> class basic_printf_context;
/**
\rst
The ``printf`` argument formatter.
\endrst
*/
template <typename Range>
class printf_arg_formatter : public internal::arg_formatter_base<Range> {
public:
using iterator = typename Range::iterator;
private:
using char_type = typename Range::value_type;
using base = internal::arg_formatter_base<Range>;
using context_type = basic_printf_context<iterator, char_type>;
context_type& context_;
void write_null_pointer(char) {
this->specs()->type = 0;
this->write("(nil)");
}
void write_null_pointer(wchar_t) {
this->specs()->type = 0;
this->write(L"(nil)");
}
public:
using format_specs = typename base::format_specs;
/**
\rst
Constructs an argument formatter object.
*buffer* is a reference to the output buffer and *specs* contains format
specifier information for standard argument types.
\endrst
*/
printf_arg_formatter(iterator iter, format_specs& specs, context_type& ctx)
: base(Range(iter), &specs, internal::locale_ref()), context_(ctx) {}
template <typename T, FMT_ENABLE_IF(fmt::internal::is_integral<T>::value)>
iterator operator()(T value) {
// MSVC2013 fails to compile separate overloads for bool and char_type so
// use std::is_same instead.
if (std::is_same<T, bool>::value) {
format_specs& fmt_specs = *this->specs();
if (fmt_specs.type != 's') return base::operator()(value ? 1 : 0);
fmt_specs.type = 0;
this->write(value != 0);
} else if (std::is_same<T, char_type>::value) {
format_specs& fmt_specs = *this->specs();
if (fmt_specs.type && fmt_specs.type != 'c')
return (*this)(static_cast<int>(value));
fmt_specs.sign = sign::none;
fmt_specs.alt = false;
fmt_specs.align = align::right;
return base::operator()(value);
} else {
return base::operator()(value);
}
return this->out();
}
template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
iterator operator()(T value) {
return base::operator()(value);
}
/** Formats a null-terminated C string. */
iterator operator()(const char* value) {
if (value)
base::operator()(value);
else if (this->specs()->type == 'p')
write_null_pointer(char_type());
else
this->write("(null)");
return this->out();
}
/** Formats a null-terminated wide C string. */
iterator operator()(const wchar_t* value) {
if (value)
base::operator()(value);
else if (this->specs()->type == 'p')
write_null_pointer(char_type());
else
this->write(L"(null)");
return this->out();
}
iterator operator()(basic_string_view<char_type> value) {
return base::operator()(value);
}
iterator operator()(monostate value) { return base::operator()(value); }
/** Formats a pointer. */
iterator operator()(const void* value) {
if (value) return base::operator()(value);
this->specs()->type = 0;
write_null_pointer(char_type());
return this->out();
}
/** Formats an argument of a custom (user-defined) type. */
iterator operator()(typename basic_format_arg<context_type>::handle handle) {
handle.format(context_.parse_context(), context_);
return this->out();
}
};
template <typename T> struct printf_formatter {
printf_formatter() = delete;
template <typename ParseContext>
auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
template <typename FormatContext>
auto format(const T& value, FormatContext& ctx) -> decltype(ctx.out()) {
internal::format_value(internal::get_container(ctx.out()), value);
return ctx.out();
}
};
/** This template formats data and writes the output to a writer. */
template <typename OutputIt, typename Char> class basic_printf_context {
public:
/** The character type for the output. */
using char_type = Char;
using iterator = OutputIt;
using format_arg = basic_format_arg<basic_printf_context>;
template <typename T> using formatter_type = printf_formatter<T>;
private:
using format_specs = basic_format_specs<char_type>;
OutputIt out_;
basic_format_args<basic_printf_context> args_;
basic_format_parse_context<Char> parse_ctx_;
static void parse_flags(format_specs& specs, const Char*& it,
const Char* end);
// Returns the argument with specified index or, if arg_index is -1, the next
// argument.
format_arg get_arg(int arg_index = -1);
// Parses argument index, flags and width and returns the argument index.
int parse_header(const Char*& it, const Char* end, format_specs& specs);
public:
/**
\rst
Constructs a ``printf_context`` object. References to the arguments and
the writer are stored in the context object so make sure they have
appropriate lifetimes.
\endrst
*/
basic_printf_context(OutputIt out, basic_string_view<char_type> format_str,
basic_format_args<basic_printf_context> args)
: out_(out), args_(args), parse_ctx_(format_str) {}
OutputIt out() { return out_; }
void advance_to(OutputIt it) { out_ = it; }
internal::locale_ref locale() { return {}; }
format_arg arg(int id) const { return args_.get(id); }
basic_format_parse_context<Char>& parse_context() { return parse_ctx_; }
FMT_CONSTEXPR void on_error(const char* message) {
parse_ctx_.on_error(message);
}
/** Formats stored arguments and writes the output to the range. */
template <typename ArgFormatter = printf_arg_formatter<buffer_range<Char>>>
OutputIt format();
};
template <typename OutputIt, typename Char>
void basic_printf_context<OutputIt, Char>::parse_flags(format_specs& specs,
const Char*& it,
const Char* end) {
for (; it != end; ++it) {
switch (*it) {
case '-':
specs.align = align::left;
break;
case '+':
specs.sign = sign::plus;
break;
case '0':
specs.fill[0] = '0';
break;
case ' ':
specs.sign = sign::space;
break;
case '#':
specs.alt = true;
break;
default:
return;
}
}
}
template <typename OutputIt, typename Char>
typename basic_printf_context<OutputIt, Char>::format_arg
basic_printf_context<OutputIt, Char>::get_arg(int arg_index) {
if (arg_index < 0)
arg_index = parse_ctx_.next_arg_id();
else
parse_ctx_.check_arg_id(--arg_index);
return internal::get_arg(*this, arg_index);
}
template <typename OutputIt, typename Char>
int basic_printf_context<OutputIt, Char>::parse_header(const Char*& it,
const Char* end,
format_specs& specs) {
int arg_index = -1;
char_type c = *it;
if (c >= '0' && c <= '9') {
// Parse an argument index (if followed by '$') or a width possibly
// preceded with '0' flag(s).
internal::error_handler eh;
int value = parse_nonnegative_int(it, end, eh);
if (it != end && *it == '$') { // value is an argument index
++it;
arg_index = value;
} else {
if (c == '0') specs.fill[0] = '0';
if (value != 0) {
// Nonzero value means that we parsed width and don't need to
// parse it or flags again, so return now.
specs.width = value;
return arg_index;
}
}
}
parse_flags(specs, it, end);
// Parse width.
if (it != end) {
if (*it >= '0' && *it <= '9') {
internal::error_handler eh;
specs.width = parse_nonnegative_int(it, end, eh);
} else if (*it == '*') {
++it;
specs.width = static_cast<int>(visit_format_arg(
internal::printf_width_handler<char_type>(specs), get_arg()));
}
}
return arg_index;
}
template <typename OutputIt, typename Char>
template <typename ArgFormatter>
OutputIt basic_printf_context<OutputIt, Char>::format() {
auto out = this->out();
const Char* start = parse_ctx_.begin();
const Char* end = parse_ctx_.end();
auto it = start;
while (it != end) {
char_type c = *it++;
if (c != '%') continue;
if (it != end && *it == c) {
out = std::copy(start, it, out);
start = ++it;
continue;
}
out = std::copy(start, it - 1, out);
format_specs specs;
specs.align = align::right;
// Parse argument index, flags and width.
int arg_index = parse_header(it, end, specs);
if (arg_index == 0) on_error("argument index out of range");
// Parse precision.
if (it != end && *it == '.') {
++it;
c = it != end ? *it : 0;
if ('0' <= c && c <= '9') {
internal::error_handler eh;
specs.precision = parse_nonnegative_int(it, end, eh);
} else if (c == '*') {
++it;
specs.precision = static_cast<int>(
visit_format_arg(internal::printf_precision_handler(), get_arg()));
} else {
specs.precision = 0;
}
}
format_arg arg = get_arg(arg_index);
if (specs.alt && visit_format_arg(internal::is_zero_int(), arg))
specs.alt = false;
if (specs.fill[0] == '0') {
if (arg.is_arithmetic())
specs.align = align::numeric;
else
specs.fill[0] = ' '; // Ignore '0' flag for non-numeric types.
}
// Parse length and convert the argument to the required type.
c = it != end ? *it++ : 0;
char_type t = it != end ? *it : 0;
using internal::convert_arg;
switch (c) {
case 'h':
if (t == 'h') {
++it;
t = it != end ? *it : 0;
convert_arg<signed char>(arg, t);
} else {
convert_arg<short>(arg, t);
}
break;
case 'l':
if (t == 'l') {
++it;
t = it != end ? *it : 0;
convert_arg<long long>(arg, t);
} else {
convert_arg<long>(arg, t);
}
break;
case 'j':
convert_arg<intmax_t>(arg, t);
break;
case 'z':
convert_arg<std::size_t>(arg, t);
break;
case 't':
convert_arg<std::ptrdiff_t>(arg, t);
break;
case 'L':
// printf produces garbage when 'L' is omitted for long double, no
// need to do the same.
break;
default:
--it;
convert_arg<void>(arg, c);
}
// Parse type.
if (it == end) FMT_THROW(format_error("invalid format string"));
specs.type = static_cast<char>(*it++);
if (arg.is_integral()) {
// Normalize type.
switch (specs.type) {
case 'i':
case 'u':
specs.type = 'd';
break;
case 'c':
visit_format_arg(internal::char_converter<basic_printf_context>(arg),
arg);
break;
}
}
start = it;
// Format argument.
visit_format_arg(ArgFormatter(out, specs, *this), arg);
}
return std::copy(start, it, out);
}
template <typename Char>
using basic_printf_context_t =
basic_printf_context<std::back_insert_iterator<internal::buffer<Char>>,
Char>;
using printf_context = basic_printf_context_t<char>;
using wprintf_context = basic_printf_context_t<wchar_t>;
using printf_args = basic_format_args<printf_context>;
using wprintf_args = basic_format_args<wprintf_context>;
/**
\rst
Constructs an `~fmt::format_arg_store` object that contains references to
arguments and can be implicitly converted to `~fmt::printf_args`.
\endrst
*/
template <typename... Args>
inline format_arg_store<printf_context, Args...> make_printf_args(
const Args&... args) {
return {args...};
}
/**
\rst
Constructs an `~fmt::format_arg_store` object that contains references to
arguments and can be implicitly converted to `~fmt::wprintf_args`.
\endrst
*/
template <typename... Args>
inline format_arg_store<wprintf_context, Args...> make_wprintf_args(
const Args&... args) {
return {args...};
}
template <typename S, typename Char = char_t<S>>
inline std::basic_string<Char> vsprintf(
const S& format,
basic_format_args<basic_printf_context_t<type_identity_t<Char>>> args) {
basic_memory_buffer<Char> buffer;
printf(buffer, to_string_view(format), args);
return to_string(buffer);
}
/**
\rst
Formats arguments and returns the result as a string.
**Example**::
std::string message = fmt::sprintf("The answer is %d", 42);
\endrst
*/
template <typename S, typename... Args,
typename Char = enable_if_t<internal::is_string<S>::value, char_t<S>>>
inline std::basic_string<Char> sprintf(const S& format, const Args&... args) {
using context = basic_printf_context_t<Char>;
return vsprintf(to_string_view(format), make_format_args<context>(args...));
}
template <typename S, typename Char = char_t<S>>
inline int vfprintf(
std::FILE* f, const S& format,
basic_format_args<basic_printf_context_t<type_identity_t<Char>>> args) {
basic_memory_buffer<Char> buffer;
printf(buffer, to_string_view(format), args);
std::size_t size = buffer.size();
return std::fwrite(buffer.data(), sizeof(Char), size, f) < size
? -1
: static_cast<int>(size);
}
/**
\rst
Prints formatted data to the file *f*.
**Example**::
fmt::fprintf(stderr, "Don't %s!", "panic");
\endrst
*/
template <typename S, typename... Args,
typename Char = enable_if_t<internal::is_string<S>::value, char_t<S>>>
inline int fprintf(std::FILE* f, const S& format, const Args&... args) {
using context = basic_printf_context_t<Char>;
return vfprintf(f, to_string_view(format),
make_format_args<context>(args...));
}
template <typename S, typename Char = char_t<S>>
inline int vprintf(
const S& format,
basic_format_args<basic_printf_context_t<type_identity_t<Char>>> args) {
return vfprintf(stdout, to_string_view(format), args);
}
/**
\rst
Prints formatted data to ``stdout``.
**Example**::
fmt::printf("Elapsed time: %.2f seconds", 1.23);
\endrst
*/
template <typename S, typename... Args,
FMT_ENABLE_IF(internal::is_string<S>::value)>
inline int printf(const S& format_str, const Args&... args) {
using context = basic_printf_context_t<char_t<S>>;
return vprintf(to_string_view(format_str),
make_format_args<context>(args...));
}
template <typename S, typename Char = char_t<S>>
inline int vfprintf(
std::basic_ostream<Char>& os, const S& format,
basic_format_args<basic_printf_context_t<type_identity_t<Char>>> args) {
basic_memory_buffer<Char> buffer;
printf(buffer, to_string_view(format), args);
internal::write(os, buffer);
return static_cast<int>(buffer.size());
}
/** Formats arguments and writes the output to the range. */
template <typename ArgFormatter, typename Char,
typename Context =
basic_printf_context<typename ArgFormatter::iterator, Char>>
typename ArgFormatter::iterator vprintf(
internal::buffer<Char>& out, basic_string_view<Char> format_str,
basic_format_args<type_identity_t<Context>> args) {
typename ArgFormatter::iterator iter(out);
Context(iter, format_str, args).template format<ArgFormatter>();
return iter;
}
/**
\rst
Prints formatted data to the stream *os*.
**Example**::
fmt::fprintf(cerr, "Don't %s!", "panic");
\endrst
*/
template <typename S, typename... Args, typename Char = char_t<S>>
inline int fprintf(std::basic_ostream<Char>& os, const S& format_str,
const Args&... args) {
using context = basic_printf_context_t<Char>;
return vfprintf(os, to_string_view(format_str),
make_format_args<context>(args...));
}
FMT_END_NAMESPACE
#endif // FMT_PRINTF_H_

View File

@@ -1,387 +0,0 @@
// Formatting library for C++ - experimental range support
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
//
// Copyright (c) 2018 - present, Remotion (Igor Schulz)
// All Rights Reserved
// {fmt} support for ranges, containers and types tuple interface.
#ifndef FMT_RANGES_H_
#define FMT_RANGES_H_
#include <initializer_list>
#include <type_traits>
#include "format.h"
// output only up to N items from the range.
#ifndef FMT_RANGE_OUTPUT_LENGTH_LIMIT
# define FMT_RANGE_OUTPUT_LENGTH_LIMIT 256
#endif
FMT_BEGIN_NAMESPACE
template <typename Char> struct formatting_base {
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
};
template <typename Char, typename Enable = void>
struct formatting_range : formatting_base<Char> {
static FMT_CONSTEXPR_DECL const std::size_t range_length_limit =
FMT_RANGE_OUTPUT_LENGTH_LIMIT; // output only up to N items from the
// range.
Char prefix;
Char delimiter;
Char postfix;
formatting_range() : prefix('{'), delimiter(','), postfix('}') {}
static FMT_CONSTEXPR_DECL const bool add_delimiter_spaces = true;
static FMT_CONSTEXPR_DECL const bool add_prepostfix_space = false;
};
template <typename Char, typename Enable = void>
struct formatting_tuple : formatting_base<Char> {
Char prefix;
Char delimiter;
Char postfix;
formatting_tuple() : prefix('('), delimiter(','), postfix(')') {}
static FMT_CONSTEXPR_DECL const bool add_delimiter_spaces = true;
static FMT_CONSTEXPR_DECL const bool add_prepostfix_space = false;
};
namespace internal {
template <typename RangeT, typename OutputIterator>
OutputIterator copy(const RangeT& range, OutputIterator out) {
for (auto it = range.begin(), end = range.end(); it != end; ++it)
*out++ = *it;
return out;
}
template <typename OutputIterator>
OutputIterator copy(const char* str, OutputIterator out) {
while (*str) *out++ = *str++;
return out;
}
template <typename OutputIterator>
OutputIterator copy(char ch, OutputIterator out) {
*out++ = ch;
return out;
}
/// Return true value if T has std::string interface, like std::string_view.
template <typename T> class is_like_std_string {
template <typename U>
static auto check(U* p)
-> decltype((void)p->find('a'), p->length(), (void)p->data(), int());
template <typename> static void check(...);
public:
static FMT_CONSTEXPR_DECL const bool value =
is_string<T>::value || !std::is_void<decltype(check<T>(nullptr))>::value;
};
template <typename Char>
struct is_like_std_string<fmt::basic_string_view<Char>> : std::true_type {};
template <typename... Ts> struct conditional_helper {};
template <typename T, typename _ = void> struct is_range_ : std::false_type {};
#if !FMT_MSC_VER || FMT_MSC_VER > 1800
template <typename T>
struct is_range_<
T, conditional_t<false,
conditional_helper<decltype(std::declval<T>().begin()),
decltype(std::declval<T>().end())>,
void>> : std::true_type {};
#endif
/// tuple_size and tuple_element check.
template <typename T> class is_tuple_like_ {
template <typename U>
static auto check(U* p) -> decltype(std::tuple_size<U>::value, int());
template <typename> static void check(...);
public:
static FMT_CONSTEXPR_DECL const bool value =
!std::is_void<decltype(check<T>(nullptr))>::value;
};
// Check for integer_sequence
#if defined(__cpp_lib_integer_sequence) || FMT_MSC_VER >= 1900
template <typename T, T... N>
using integer_sequence = std::integer_sequence<T, N...>;
template <std::size_t... N> using index_sequence = std::index_sequence<N...>;
template <std::size_t N>
using make_index_sequence = std::make_index_sequence<N>;
#else
template <typename T, T... N> struct integer_sequence {
using value_type = T;
static FMT_CONSTEXPR std::size_t size() { return sizeof...(N); }
};
template <std::size_t... N>
using index_sequence = integer_sequence<std::size_t, N...>;
template <typename T, std::size_t N, T... Ns>
struct make_integer_sequence : make_integer_sequence<T, N - 1, N - 1, Ns...> {};
template <typename T, T... Ns>
struct make_integer_sequence<T, 0, Ns...> : integer_sequence<T, Ns...> {};
template <std::size_t N>
using make_index_sequence = make_integer_sequence<std::size_t, N>;
#endif
template <class Tuple, class F, size_t... Is>
void for_each(index_sequence<Is...>, Tuple&& tup, F&& f) FMT_NOEXCEPT {
using std::get;
// using free function get<I>(T) now.
const int _[] = {0, ((void)f(get<Is>(tup)), 0)...};
(void)_; // blocks warnings
}
template <class T>
FMT_CONSTEXPR make_index_sequence<std::tuple_size<T>::value> get_indexes(
T const&) {
return {};
}
template <class Tuple, class F> void for_each(Tuple&& tup, F&& f) {
const auto indexes = get_indexes(tup);
for_each(indexes, std::forward<Tuple>(tup), std::forward<F>(f));
}
template <typename Arg, FMT_ENABLE_IF(!is_like_std_string<
typename std::decay<Arg>::type>::value)>
FMT_CONSTEXPR const char* format_str_quoted(bool add_space, const Arg&) {
return add_space ? " {}" : "{}";
}
template <typename Arg, FMT_ENABLE_IF(is_like_std_string<
typename std::decay<Arg>::type>::value)>
FMT_CONSTEXPR const char* format_str_quoted(bool add_space, const Arg&) {
return add_space ? " \"{}\"" : "\"{}\"";
}
FMT_CONSTEXPR const char* format_str_quoted(bool add_space, const char*) {
return add_space ? " \"{}\"" : "\"{}\"";
}
FMT_CONSTEXPR const wchar_t* format_str_quoted(bool add_space, const wchar_t*) {
return add_space ? L" \"{}\"" : L"\"{}\"";
}
FMT_CONSTEXPR const char* format_str_quoted(bool add_space, const char) {
return add_space ? " '{}'" : "'{}'";
}
FMT_CONSTEXPR const wchar_t* format_str_quoted(bool add_space, const wchar_t) {
return add_space ? L" '{}'" : L"'{}'";
}
} // namespace internal
template <typename T> struct is_tuple_like {
static FMT_CONSTEXPR_DECL const bool value =
internal::is_tuple_like_<T>::value && !internal::is_range_<T>::value;
};
template <typename TupleT, typename Char>
struct formatter<TupleT, Char, enable_if_t<fmt::is_tuple_like<TupleT>::value>> {
private:
// C++11 generic lambda for format()
template <typename FormatContext> struct format_each {
template <typename T> void operator()(const T& v) {
if (i > 0) {
if (formatting.add_prepostfix_space) {
*out++ = ' ';
}
out = internal::copy(formatting.delimiter, out);
}
out = format_to(out,
internal::format_str_quoted(
(formatting.add_delimiter_spaces && i > 0), v),
v);
++i;
}
formatting_tuple<Char>& formatting;
std::size_t& i;
typename std::add_lvalue_reference<decltype(
std::declval<FormatContext>().out())>::type out;
};
public:
formatting_tuple<Char> formatting;
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return formatting.parse(ctx);
}
template <typename FormatContext = format_context>
auto format(const TupleT& values, FormatContext& ctx) -> decltype(ctx.out()) {
auto out = ctx.out();
std::size_t i = 0;
internal::copy(formatting.prefix, out);
internal::for_each(values, format_each<FormatContext>{formatting, i, out});
if (formatting.add_prepostfix_space) {
*out++ = ' ';
}
internal::copy(formatting.postfix, out);
return ctx.out();
}
};
template <typename T, typename Char> struct is_range {
static FMT_CONSTEXPR_DECL const bool value =
internal::is_range_<T>::value &&
!internal::is_like_std_string<T>::value &&
!std::is_convertible<T, std::basic_string<Char>>::value &&
!std::is_constructible<internal::std_string_view<Char>, T>::value;
};
template <typename RangeT, typename Char>
struct formatter<RangeT, Char,
enable_if_t<fmt::is_range<RangeT, Char>::value>> {
formatting_range<Char> formatting;
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return formatting.parse(ctx);
}
template <typename FormatContext>
typename FormatContext::iterator format(const RangeT& values,
FormatContext& ctx) {
auto out = internal::copy(formatting.prefix, ctx.out());
std::size_t i = 0;
for (auto it = values.begin(), end = values.end(); it != end; ++it) {
if (i > 0) {
if (formatting.add_prepostfix_space) *out++ = ' ';
out = internal::copy(formatting.delimiter, out);
}
out = format_to(out,
internal::format_str_quoted(
(formatting.add_delimiter_spaces && i > 0), *it),
*it);
if (++i > formatting.range_length_limit) {
out = format_to(out, " ... <other elements>");
break;
}
}
if (formatting.add_prepostfix_space) *out++ = ' ';
return internal::copy(formatting.postfix, out);
}
};
template <typename Char, typename... T> struct tuple_arg_join : internal::view {
const std::tuple<T...>& tuple;
basic_string_view<Char> sep;
tuple_arg_join(const std::tuple<T...>& t, basic_string_view<Char> s)
: tuple{t}, sep{s} {}
};
template <typename Char, typename... T>
struct formatter<tuple_arg_join<Char, T...>, Char> {
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
template <typename FormatContext>
typename FormatContext::iterator format(
const tuple_arg_join<Char, T...>& value, FormatContext& ctx) {
return format(value, ctx, internal::make_index_sequence<sizeof...(T)>{});
}
private:
template <typename FormatContext, size_t... N>
typename FormatContext::iterator format(
const tuple_arg_join<Char, T...>& value, FormatContext& ctx,
internal::index_sequence<N...>) {
return format_args(value, ctx, std::get<N>(value.tuple)...);
}
template <typename FormatContext>
typename FormatContext::iterator format_args(
const tuple_arg_join<Char, T...>&, FormatContext& ctx) {
// NOTE: for compilers that support C++17, this empty function instantiation
// can be replaced with a constexpr branch in the variadic overload.
return ctx.out();
}
template <typename FormatContext, typename Arg, typename... Args>
typename FormatContext::iterator format_args(
const tuple_arg_join<Char, T...>& value, FormatContext& ctx,
const Arg& arg, const Args&... args) {
using base = formatter<typename std::decay<Arg>::type, Char>;
auto out = ctx.out();
out = base{}.format(arg, ctx);
if (sizeof...(Args) > 0) {
out = std::copy(value.sep.begin(), value.sep.end(), out);
ctx.advance_to(out);
return format_args(value, ctx, args...);
}
return out;
}
};
/**
\rst
Returns an object that formats `tuple` with elements separated by `sep`.
**Example**::
std::tuple<int, char> t = {1, 'a'};
fmt::print("{}", fmt::join(t, ", "));
// Output: "1, a"
\endrst
*/
template <typename... T>
FMT_CONSTEXPR tuple_arg_join<char, T...> join(const std::tuple<T...>& tuple,
string_view sep) {
return {tuple, sep};
}
template <typename... T>
FMT_CONSTEXPR tuple_arg_join<wchar_t, T...> join(const std::tuple<T...>& tuple,
wstring_view sep) {
return {tuple, sep};
}
/**
\rst
Returns an object that formats `initializer_list` with elements separated by
`sep`.
**Example**::
fmt::print("{}", fmt::join({1, 2, 3}, ", "));
// Output: "1, 2, 3"
\endrst
*/
template <typename T>
arg_join<internal::iterator_t<const std::initializer_list<T>>, char> join(
std::initializer_list<T> list, string_view sep) {
return join(std::begin(list), std::end(list), sep);
}
template <typename T>
arg_join<internal::iterator_t<const std::initializer_list<T>>, wchar_t> join(
std::initializer_list<T> list, wstring_view sep) {
return join(std::begin(list), std::end(list), sep);
}
FMT_END_NAMESPACE
#endif // FMT_RANGES_H_

View File

@@ -1,176 +0,0 @@
// Formatting library for C++
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#include "fmt/format-inl.h"
FMT_BEGIN_NAMESPACE
namespace internal {
template <typename T>
int format_float(char* buf, std::size_t size, const char* format, int precision,
T value) {
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if (precision > 100000)
throw std::runtime_error(
"fuzz mode - avoid large allocation inside snprintf");
#endif
// Suppress the warning about nonliteral format string.
int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF;
return precision < 0 ? snprintf_ptr(buf, size, format, value)
: snprintf_ptr(buf, size, format, precision, value);
}
struct sprintf_specs {
int precision;
char type;
bool alt : 1;
template <typename Char>
constexpr sprintf_specs(basic_format_specs<Char> specs)
: precision(specs.precision), type(specs.type), alt(specs.alt) {}
constexpr bool has_precision() const { return precision >= 0; }
};
// This is deprecated and is kept only to preserve ABI compatibility.
template <typename Double>
char* sprintf_format(Double value, internal::buffer<char>& buf,
sprintf_specs specs) {
// Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail.
FMT_ASSERT(buf.capacity() != 0, "empty buffer");
// Build format string.
enum { max_format_size = 10 }; // longest format: %#-*.*Lg
char format[max_format_size];
char* format_ptr = format;
*format_ptr++ = '%';
if (specs.alt || !specs.type) *format_ptr++ = '#';
if (specs.precision >= 0) {
*format_ptr++ = '.';
*format_ptr++ = '*';
}
if (std::is_same<Double, long double>::value) *format_ptr++ = 'L';
char type = specs.type;
if (type == '%')
type = 'f';
else if (type == 0 || type == 'n')
type = 'g';
#if FMT_MSC_VER
if (type == 'F') {
// MSVC's printf doesn't support 'F'.
type = 'f';
}
#endif
*format_ptr++ = type;
*format_ptr = '\0';
// Format using snprintf.
char* start = nullptr;
char* decimal_point_pos = nullptr;
for (;;) {
std::size_t buffer_size = buf.capacity();
start = &buf[0];
int result =
format_float(start, buffer_size, format, specs.precision, value);
if (result >= 0) {
unsigned n = internal::to_unsigned(result);
if (n < buf.capacity()) {
// Find the decimal point.
auto p = buf.data(), end = p + n;
if (*p == '+' || *p == '-') ++p;
if (specs.type != 'a' && specs.type != 'A') {
while (p < end && *p >= '0' && *p <= '9') ++p;
if (p < end && *p != 'e' && *p != 'E') {
decimal_point_pos = p;
if (!specs.type) {
// Keep only one trailing zero after the decimal point.
++p;
if (*p == '0') ++p;
while (p != end && *p >= '1' && *p <= '9') ++p;
char* where = p;
while (p != end && *p == '0') ++p;
if (p == end || *p < '0' || *p > '9') {
if (p != end) std::memmove(where, p, to_unsigned(end - p));
n -= static_cast<unsigned>(p - where);
}
}
}
}
buf.resize(n);
break; // The buffer is large enough - continue with formatting.
}
buf.reserve(n + 1);
} else {
// If result is negative we ask to increase the capacity by at least 1,
// but as std::vector, the buffer grows exponentially.
buf.reserve(buf.capacity() + 1);
}
}
return decimal_point_pos;
}
} // namespace internal
template FMT_API char* internal::sprintf_format(double, internal::buffer<char>&,
sprintf_specs);
template FMT_API char* internal::sprintf_format(long double,
internal::buffer<char>&,
sprintf_specs);
template struct FMT_INSTANTIATION_DEF_API internal::basic_data<void>;
// Workaround a bug in MSVC2013 that prevents instantiation of format_float.
int (*instantiate_format_float)(double, int, internal::float_specs,
internal::buffer<char>&) =
internal::format_float;
#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
template FMT_API internal::locale_ref::locale_ref(const std::locale& loc);
template FMT_API std::locale internal::locale_ref::get<std::locale>() const;
#endif
// Explicit instantiations for char.
template FMT_API std::string internal::grouping_impl<char>(locale_ref);
template FMT_API char internal::thousands_sep_impl(locale_ref);
template FMT_API char internal::decimal_point_impl(locale_ref);
template FMT_API void internal::buffer<char>::append(const char*, const char*);
template FMT_API void internal::arg_map<format_context>::init(
const basic_format_args<format_context>& args);
template FMT_API std::string internal::vformat<char>(
string_view, basic_format_args<format_context>);
template FMT_API format_context::iterator internal::vformat_to(
internal::buffer<char>&, string_view, basic_format_args<format_context>);
template FMT_API int internal::snprintf_float(double, int,
internal::float_specs,
internal::buffer<char>&);
template FMT_API int internal::snprintf_float(long double, int,
internal::float_specs,
internal::buffer<char>&);
template FMT_API int internal::format_float(double, int, internal::float_specs,
internal::buffer<char>&);
template FMT_API int internal::format_float(long double, int,
internal::float_specs,
internal::buffer<char>&);
// Explicit instantiations for wchar_t.
template FMT_API std::string internal::grouping_impl<wchar_t>(locale_ref);
template FMT_API wchar_t internal::thousands_sep_impl(locale_ref);
template FMT_API wchar_t internal::decimal_point_impl(locale_ref);
template FMT_API void internal::buffer<wchar_t>::append(const wchar_t*,
const wchar_t*);
template FMT_API std::wstring internal::vformat<wchar_t>(
wstring_view, basic_format_args<wformat_context>);
FMT_END_NAMESPACE

View File

@@ -1,316 +0,0 @@
// Formatting library for C++ - optional OS-specific functionality
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
// Disable bogus MSVC warnings.
#if !defined(_CRT_SECURE_NO_WARNINGS) && defined(_MSC_VER)
# define _CRT_SECURE_NO_WARNINGS
#endif
#include "fmt/os.h"
#include <climits>
#if FMT_USE_FCNTL
# include <sys/stat.h>
# include <sys/types.h>
# ifndef _WIN32
# include <unistd.h>
# else
# ifndef WIN32_LEAN_AND_MEAN
# define WIN32_LEAN_AND_MEAN
# endif
# include <io.h>
# include <windows.h>
# define O_CREAT _O_CREAT
# define O_TRUNC _O_TRUNC
# ifndef S_IRUSR
# define S_IRUSR _S_IREAD
# endif
# ifndef S_IWUSR
# define S_IWUSR _S_IWRITE
# endif
# ifdef __MINGW32__
# define _SH_DENYNO 0x40
# endif
# endif // _WIN32
#endif // FMT_USE_FCNTL
#ifdef _WIN32
# include <windows.h>
#endif
#ifdef fileno
# undef fileno
#endif
namespace {
#ifdef _WIN32
// Return type of read and write functions.
using RWResult = int;
// On Windows the count argument to read and write is unsigned, so convert
// it from size_t preventing integer overflow.
inline unsigned convert_rwcount(std::size_t count) {
return count <= UINT_MAX ? static_cast<unsigned>(count) : UINT_MAX;
}
#else
// Return type of read and write functions.
using RWResult = ssize_t;
inline std::size_t convert_rwcount(std::size_t count) { return count; }
#endif
} // namespace
FMT_BEGIN_NAMESPACE
#ifdef _WIN32
internal::utf16_to_utf8::utf16_to_utf8(wstring_view s) {
if (int error_code = convert(s)) {
FMT_THROW(windows_error(error_code,
"cannot convert string from UTF-16 to UTF-8"));
}
}
int internal::utf16_to_utf8::convert(wstring_view s) {
if (s.size() > INT_MAX) return ERROR_INVALID_PARAMETER;
int s_size = static_cast<int>(s.size());
if (s_size == 0) {
// WideCharToMultiByte does not support zero length, handle separately.
buffer_.resize(1);
buffer_[0] = 0;
return 0;
}
int length = WideCharToMultiByte(CP_UTF8, 0, s.data(), s_size, nullptr, 0,
nullptr, nullptr);
if (length == 0) return GetLastError();
buffer_.resize(length + 1);
length = WideCharToMultiByte(CP_UTF8, 0, s.data(), s_size, &buffer_[0],
length, nullptr, nullptr);
if (length == 0) return GetLastError();
buffer_[length] = 0;
return 0;
}
void windows_error::init(int err_code, string_view format_str,
format_args args) {
error_code_ = err_code;
memory_buffer buffer;
internal::format_windows_error(buffer, err_code, vformat(format_str, args));
std::runtime_error& base = *this;
base = std::runtime_error(to_string(buffer));
}
void internal::format_windows_error(internal::buffer<char>& out, int error_code,
string_view message) FMT_NOEXCEPT {
FMT_TRY {
wmemory_buffer buf;
buf.resize(inline_buffer_size);
for (;;) {
wchar_t* system_message = &buf[0];
int result = FormatMessageW(
FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, nullptr,
error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), system_message,
static_cast<uint32_t>(buf.size()), nullptr);
if (result != 0) {
utf16_to_utf8 utf8_message;
if (utf8_message.convert(system_message) == ERROR_SUCCESS) {
internal::writer w(out);
w.write(message);
w.write(": ");
w.write(utf8_message);
return;
}
break;
}
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER)
break; // Can't get error message, report error code instead.
buf.resize(buf.size() * 2);
}
}
FMT_CATCH(...) {}
format_error_code(out, error_code, message);
}
void report_windows_error(int error_code,
fmt::string_view message) FMT_NOEXCEPT {
report_error(internal::format_windows_error, error_code, message);
}
#endif // _WIN32
buffered_file::~buffered_file() FMT_NOEXCEPT {
if (file_ && FMT_SYSTEM(fclose(file_)) != 0)
report_system_error(errno, "cannot close file");
}
buffered_file::buffered_file(cstring_view filename, cstring_view mode) {
FMT_RETRY_VAL(file_, FMT_SYSTEM(fopen(filename.c_str(), mode.c_str())),
nullptr);
if (!file_)
FMT_THROW(system_error(errno, "cannot open file {}", filename.c_str()));
}
void buffered_file::close() {
if (!file_) return;
int result = FMT_SYSTEM(fclose(file_));
file_ = nullptr;
if (result != 0) FMT_THROW(system_error(errno, "cannot close file"));
}
// A macro used to prevent expansion of fileno on broken versions of MinGW.
#define FMT_ARGS
int buffered_file::fileno() const {
int fd = FMT_POSIX_CALL(fileno FMT_ARGS(file_));
if (fd == -1) FMT_THROW(system_error(errno, "cannot get file descriptor"));
return fd;
}
#if FMT_USE_FCNTL
file::file(cstring_view path, int oflag) {
int mode = S_IRUSR | S_IWUSR;
# if defined(_WIN32) && !defined(__MINGW32__)
fd_ = -1;
FMT_POSIX_CALL(sopen_s(&fd_, path.c_str(), oflag, _SH_DENYNO, mode));
# else
FMT_RETRY(fd_, FMT_POSIX_CALL(open(path.c_str(), oflag, mode)));
# endif
if (fd_ == -1)
FMT_THROW(system_error(errno, "cannot open file {}", path.c_str()));
}
file::~file() FMT_NOEXCEPT {
// Don't retry close in case of EINTR!
// See http://linux.derkeiler.com/Mailing-Lists/Kernel/2005-09/3000.html
if (fd_ != -1 && FMT_POSIX_CALL(close(fd_)) != 0)
report_system_error(errno, "cannot close file");
}
void file::close() {
if (fd_ == -1) return;
// Don't retry close in case of EINTR!
// See http://linux.derkeiler.com/Mailing-Lists/Kernel/2005-09/3000.html
int result = FMT_POSIX_CALL(close(fd_));
fd_ = -1;
if (result != 0) FMT_THROW(system_error(errno, "cannot close file"));
}
long long file::size() const {
# ifdef _WIN32
// Use GetFileSize instead of GetFileSizeEx for the case when _WIN32_WINNT
// is less than 0x0500 as is the case with some default MinGW builds.
// Both functions support large file sizes.
DWORD size_upper = 0;
HANDLE handle = reinterpret_cast<HANDLE>(_get_osfhandle(fd_));
DWORD size_lower = FMT_SYSTEM(GetFileSize(handle, &size_upper));
if (size_lower == INVALID_FILE_SIZE) {
DWORD error = GetLastError();
if (error != NO_ERROR)
FMT_THROW(windows_error(GetLastError(), "cannot get file size"));
}
unsigned long long long_size = size_upper;
return (long_size << sizeof(DWORD) * CHAR_BIT) | size_lower;
# else
using Stat = struct stat;
Stat file_stat = Stat();
if (FMT_POSIX_CALL(fstat(fd_, &file_stat)) == -1)
FMT_THROW(system_error(errno, "cannot get file attributes"));
static_assert(sizeof(long long) >= sizeof(file_stat.st_size),
"return type of file::size is not large enough");
return file_stat.st_size;
# endif
}
std::size_t file::read(void* buffer, std::size_t count) {
RWResult result = 0;
FMT_RETRY(result, FMT_POSIX_CALL(read(fd_, buffer, convert_rwcount(count))));
if (result < 0) FMT_THROW(system_error(errno, "cannot read from file"));
return internal::to_unsigned(result);
}
std::size_t file::write(const void* buffer, std::size_t count) {
RWResult result = 0;
FMT_RETRY(result, FMT_POSIX_CALL(write(fd_, buffer, convert_rwcount(count))));
if (result < 0) FMT_THROW(system_error(errno, "cannot write to file"));
return internal::to_unsigned(result);
}
file file::dup(int fd) {
// Don't retry as dup doesn't return EINTR.
// http://pubs.opengroup.org/onlinepubs/009695399/functions/dup.html
int new_fd = FMT_POSIX_CALL(dup(fd));
if (new_fd == -1)
FMT_THROW(system_error(errno, "cannot duplicate file descriptor {}", fd));
return file(new_fd);
}
void file::dup2(int fd) {
int result = 0;
FMT_RETRY(result, FMT_POSIX_CALL(dup2(fd_, fd)));
if (result == -1) {
FMT_THROW(system_error(errno, "cannot duplicate file descriptor {} to {}",
fd_, fd));
}
}
void file::dup2(int fd, error_code& ec) FMT_NOEXCEPT {
int result = 0;
FMT_RETRY(result, FMT_POSIX_CALL(dup2(fd_, fd)));
if (result == -1) ec = error_code(errno);
}
void file::pipe(file& read_end, file& write_end) {
// Close the descriptors first to make sure that assignments don't throw
// and there are no leaks.
read_end.close();
write_end.close();
int fds[2] = {};
# ifdef _WIN32
// Make the default pipe capacity same as on Linux 2.6.11+.
enum { DEFAULT_CAPACITY = 65536 };
int result = FMT_POSIX_CALL(pipe(fds, DEFAULT_CAPACITY, _O_BINARY));
# else
// Don't retry as the pipe function doesn't return EINTR.
// http://pubs.opengroup.org/onlinepubs/009696799/functions/pipe.html
int result = FMT_POSIX_CALL(pipe(fds));
# endif
if (result != 0) FMT_THROW(system_error(errno, "cannot create pipe"));
// The following assignments don't throw because read_fd and write_fd
// are closed.
read_end = file(fds[0]);
write_end = file(fds[1]);
}
buffered_file file::fdopen(const char* mode) {
// Don't retry as fdopen doesn't return EINTR.
FILE* f = FMT_POSIX_CALL(fdopen(fd_, mode));
if (!f)
FMT_THROW(
system_error(errno, "cannot associate stream with file descriptor"));
buffered_file bf(f);
fd_ = -1;
return bf;
}
long getpagesize() {
# ifdef _WIN32
SYSTEM_INFO si;
GetSystemInfo(&si);
return si.dwPageSize;
# else
long size = FMT_POSIX_CALL(sysconf(_SC_PAGESIZE));
if (size < 0) FMT_THROW(system_error(errno, "cannot get memory page size"));
return size;
# endif
}
#endif // FMT_USE_FCNTL
FMT_END_NAMESPACE

View File

@@ -1,26 +0,0 @@
BSD 2-Clause License
Copyright (c) 2016 - 2019, Kim Walisch
Copyright (c) 2016 - 2019, Wojciech Muła
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@@ -1,17 +0,0 @@
### Notes for Future Maintainers
This was originally imported by @miniksa in March 2020.
The provenance information (where it came from and which commit) is stored in the file `cgmanifest.json` in the same directory as this readme.
Please update the provenance information in that file when ingesting an updated version of the dependent library.
That provenance file is automatically read and inventoried by Microsoft systems to ensure compliance with appropiate governance standards.
## What should be done to update this in the future?
1. Go to kimwalisch/libpopcnt repository on GitHub.
2. Take the `libpopcnt.h` file.
3. Don't change anything about it.
4. Validate that the `LICENSE` in the root of the repository didn't change and update it if so. It is sitting in the same directory as this readme.
If it changed dramatically, ensure that it is still compatible with our license scheme. Also update the NOTICE file in the root of our repository to declare the third-party usage.
5. Submit the pull.

View File

@@ -1,13 +0,0 @@
{"Registrations":[
{
"component": {
"type": "git",
"git": {
"repositoryUrl": "https://github.com/kimwalisch/libpopcnt",
"commitHash": "043a99fba31121a70bcb2f589faa17f534ae6085"
}
}
}
],
"Version": 1
}

View File

@@ -1,841 +0,0 @@
/*
* libpopcnt.h - C/C++ library for counting the number of 1 bits (bit
* population count) in an array as quickly as possible using
* specialized CPU instructions i.e. POPCNT, AVX2, AVX512, NEON.
*
* Copyright (c) 2016 - 2019, Kim Walisch
* Copyright (c) 2016 - 2018, Wojciech Muła
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef LIBPOPCNT_H
#define LIBPOPCNT_H
#include <stdint.h>
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
#ifndef __has_attribute
#define __has_attribute(x) 0
#endif
#ifdef __GNUC__
#define GNUC_PREREQ(x, y) \
(__GNUC__ > x || (__GNUC__ == x && __GNUC_MINOR__ >= y))
#else
#define GNUC_PREREQ(x, y) 0
#endif
#ifdef __clang__
#define CLANG_PREREQ(x, y) \
(__clang_major__ > x || (__clang_major__ == x && __clang_minor__ >= y))
#else
#define CLANG_PREREQ(x, y) 0
#endif
#if (_MSC_VER < 1900) && \
!defined(__cplusplus)
#define inline __inline
#endif
#if (defined(__i386__) || \
defined(__x86_64__) || \
defined(_M_IX86) || \
defined(_M_X64))
#define X86_OR_X64
#endif
#if defined(X86_OR_X64) && \
(defined(__cplusplus) || \
defined(_MSC_VER) || \
(GNUC_PREREQ(4, 2) || \
__has_builtin(__sync_val_compare_and_swap)))
#define HAVE_CPUID
#endif
#if GNUC_PREREQ(4, 2) || \
__has_builtin(__builtin_popcount)
#define HAVE_BUILTIN_POPCOUNT
#endif
#if GNUC_PREREQ(4, 2) || \
CLANG_PREREQ(3, 0)
#define HAVE_ASM_POPCNT
#endif
#if defined(HAVE_CPUID) && \
(defined(HAVE_ASM_POPCNT) || \
defined(_MSC_VER))
#define HAVE_POPCNT
#endif
#if defined(HAVE_CPUID) && \
GNUC_PREREQ(4, 9)
#define HAVE_AVX2
#endif
#if defined(HAVE_CPUID) && \
GNUC_PREREQ(5, 0)
#define HAVE_AVX512
#endif
#if defined(HAVE_CPUID) && \
defined(_MSC_VER) && \
defined(__AVX2__)
#define HAVE_AVX2
#endif
#if defined(HAVE_CPUID) && \
defined(_MSC_VER) && \
defined(__AVX512__)
#define HAVE_AVX512
#endif
#if defined(HAVE_CPUID) && \
CLANG_PREREQ(3, 8) && \
__has_attribute(target) && \
(!defined(_MSC_VER) || defined(__AVX2__)) && \
(!defined(__apple_build_version__) || __apple_build_version__ >= 8000000)
#define HAVE_AVX2
#define HAVE_AVX512
#endif
#ifdef __cplusplus
extern "C" {
#endif
/*
* This uses fewer arithmetic operations than any other known
* implementation on machines with fast multiplication.
* It uses 12 arithmetic operations, one of which is a multiply.
* http://en.wikipedia.org/wiki/Hamming_weight#Efficient_implementation
*/
static inline uint64_t popcount64(uint64_t x)
{
uint64_t m1 = 0x5555555555555555ll;
uint64_t m2 = 0x3333333333333333ll;
uint64_t m4 = 0x0F0F0F0F0F0F0F0Fll;
uint64_t h01 = 0x0101010101010101ll;
x -= (x >> 1) & m1;
x = (x & m2) + ((x >> 2) & m2);
x = (x + (x >> 4)) & m4;
return (x * h01) >> 56;
}
#if defined(HAVE_ASM_POPCNT) && \
defined(__x86_64__)
static inline uint64_t popcnt64(uint64_t x)
{
__asm__ ("popcnt %1, %0" : "=r" (x) : "0" (x));
return x;
}
#elif defined(HAVE_ASM_POPCNT) && \
defined(__i386__)
static inline uint32_t popcnt32(uint32_t x)
{
__asm__ ("popcnt %1, %0" : "=r" (x) : "0" (x));
return x;
}
static inline uint64_t popcnt64(uint64_t x)
{
return popcnt32((uint32_t) x) +
popcnt32((uint32_t)(x >> 32));
}
#elif defined(_MSC_VER) && \
defined(_M_X64)
#include <nmmintrin.h>
static inline uint64_t popcnt64(uint64_t x)
{
return _mm_popcnt_u64(x);
}
#elif defined(_MSC_VER) && \
defined(_M_IX86)
#include <nmmintrin.h>
static inline uint64_t popcnt64(uint64_t x)
{
return _mm_popcnt_u32((uint32_t) x) +
_mm_popcnt_u32((uint32_t)(x >> 32));
}
/* non x86 CPUs */
#elif defined(HAVE_BUILTIN_POPCOUNT)
static inline uint64_t popcnt64(uint64_t x)
{
return __builtin_popcountll(x);
}
/* no hardware POPCNT,
* use pure integer algorithm */
#else
static inline uint64_t popcnt64(uint64_t x)
{
return popcount64(x);
}
#endif
static inline uint64_t popcnt64_unrolled(const uint64_t* data, uint64_t size)
{
uint64_t i = 0;
uint64_t limit = size - size % 4;
uint64_t cnt = 0;
for (; i < limit; i += 4)
{
cnt += popcnt64(data[i+0]);
cnt += popcnt64(data[i+1]);
cnt += popcnt64(data[i+2]);
cnt += popcnt64(data[i+3]);
}
for (; i < size; i++)
cnt += popcnt64(data[i]);
return cnt;
}
#if defined(HAVE_CPUID)
#if defined(_MSC_VER)
#include <intrin.h>
#include <immintrin.h>
#endif
/* %ecx bit flags */
#define bit_POPCNT (1 << 23)
/* %ebx bit flags */
#define bit_AVX2 (1 << 5)
#define bit_AVX512 (1 << 30)
/* xgetbv bit flags */
#define XSTATE_SSE (1 << 1)
#define XSTATE_YMM (1 << 2)
#define XSTATE_ZMM (7 << 5)
static inline void run_cpuid(int eax, int ecx, int* abcd)
{
#if defined(_MSC_VER)
__cpuidex(abcd, eax, ecx);
#else
int ebx = 0;
int edx = 0;
#if defined(__i386__) && \
defined(__PIC__)
/* in case of PIC under 32-bit EBX cannot be clobbered */
__asm__ ("movl %%ebx, %%edi;"
"cpuid;"
"xchgl %%ebx, %%edi;"
: "=D" (ebx),
"+a" (eax),
"+c" (ecx),
"=d" (edx));
#else
__asm__ ("cpuid;"
: "+b" (ebx),
"+a" (eax),
"+c" (ecx),
"=d" (edx));
#endif
abcd[0] = eax;
abcd[1] = ebx;
abcd[2] = ecx;
abcd[3] = edx;
#endif
}
#if defined(HAVE_AVX2) || \
defined(HAVE_AVX512)
static inline int get_xcr0()
{
int xcr0;
#if defined(_MSC_VER)
xcr0 = (int) _xgetbv(0);
#else
__asm__ ("xgetbv" : "=a" (xcr0) : "c" (0) : "%edx" );
#endif
return xcr0;
}
#endif
static inline int get_cpuid()
{
int flags = 0;
int abcd[4];
run_cpuid(1, 0, abcd);
if ((abcd[2] & bit_POPCNT) == bit_POPCNT)
flags |= bit_POPCNT;
#if defined(HAVE_AVX2) || \
defined(HAVE_AVX512)
int osxsave_mask = (1 << 27);
/* ensure OS supports extended processor state management */
if ((abcd[2] & osxsave_mask) != osxsave_mask)
return 0;
int ymm_mask = XSTATE_SSE | XSTATE_YMM;
int zmm_mask = XSTATE_SSE | XSTATE_YMM | XSTATE_ZMM;
int xcr0 = get_xcr0();
if ((xcr0 & ymm_mask) == ymm_mask)
{
run_cpuid(7, 0, abcd);
if ((abcd[1] & bit_AVX2) == bit_AVX2)
flags |= bit_AVX2;
if ((xcr0 & zmm_mask) == zmm_mask)
{
if ((abcd[1] & bit_AVX512) == bit_AVX512)
flags |= bit_AVX512;
}
}
#endif
return flags;
}
#endif /* cpuid */
#if defined(HAVE_AVX2)
#include <immintrin.h>
#if !defined(_MSC_VER)
__attribute__ ((target ("avx2")))
#endif
static inline void CSA256(__m256i* h, __m256i* l, __m256i a, __m256i b, __m256i c)
{
__m256i u = _mm256_xor_si256(a, b);
*h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c));
*l = _mm256_xor_si256(u, c);
}
#if !defined(_MSC_VER)
__attribute__ ((target ("avx2")))
#endif
static inline __m256i popcnt256(__m256i v)
{
__m256i lookup1 = _mm256_setr_epi8(
4, 5, 5, 6, 5, 6, 6, 7,
5, 6, 6, 7, 6, 7, 7, 8,
4, 5, 5, 6, 5, 6, 6, 7,
5, 6, 6, 7, 6, 7, 7, 8
);
__m256i lookup2 = _mm256_setr_epi8(
4, 3, 3, 2, 3, 2, 2, 1,
3, 2, 2, 1, 2, 1, 1, 0,
4, 3, 3, 2, 3, 2, 2, 1,
3, 2, 2, 1, 2, 1, 1, 0
);
__m256i low_mask = _mm256_set1_epi8(0x0f);
__m256i lo = _mm256_and_si256(v, low_mask);
__m256i hi = _mm256_and_si256(_mm256_srli_epi16(v, 4), low_mask);
__m256i popcnt1 = _mm256_shuffle_epi8(lookup1, lo);
__m256i popcnt2 = _mm256_shuffle_epi8(lookup2, hi);
return _mm256_sad_epu8(popcnt1, popcnt2);
}
/*
* AVX2 Harley-Seal popcount (4th iteration).
* The algorithm is based on the paper "Faster Population Counts
* using AVX2 Instructions" by Daniel Lemire, Nathan Kurz and
* Wojciech Mula (23 Nov 2016).
* @see https://arxiv.org/abs/1611.07612
*/
#if !defined(_MSC_VER)
__attribute__ ((target ("avx2")))
#endif
static inline uint64_t popcnt_avx2(const __m256i* data, uint64_t size)
{
__m256i cnt = _mm256_setzero_si256();
__m256i ones = _mm256_setzero_si256();
__m256i twos = _mm256_setzero_si256();
__m256i fours = _mm256_setzero_si256();
__m256i eights = _mm256_setzero_si256();
__m256i sixteens = _mm256_setzero_si256();
__m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
uint64_t i = 0;
uint64_t limit = size - size % 16;
uint64_t* cnt64;
for(; i < limit; i += 16)
{
CSA256(&twosA, &ones, ones, data[i+0], data[i+1]);
CSA256(&twosB, &ones, ones, data[i+2], data[i+3]);
CSA256(&foursA, &twos, twos, twosA, twosB);
CSA256(&twosA, &ones, ones, data[i+4], data[i+5]);
CSA256(&twosB, &ones, ones, data[i+6], data[i+7]);
CSA256(&foursB, &twos, twos, twosA, twosB);
CSA256(&eightsA, &fours, fours, foursA, foursB);
CSA256(&twosA, &ones, ones, data[i+8], data[i+9]);
CSA256(&twosB, &ones, ones, data[i+10], data[i+11]);
CSA256(&foursA, &twos, twos, twosA, twosB);
CSA256(&twosA, &ones, ones, data[i+12], data[i+13]);
CSA256(&twosB, &ones, ones, data[i+14], data[i+15]);
CSA256(&foursB, &twos, twos, twosA, twosB);
CSA256(&eightsB, &fours, fours, foursA, foursB);
CSA256(&sixteens, &eights, eights, eightsA, eightsB);
cnt = _mm256_add_epi64(cnt, popcnt256(sixteens));
}
cnt = _mm256_slli_epi64(cnt, 4);
cnt = _mm256_add_epi64(cnt, _mm256_slli_epi64(popcnt256(eights), 3));
cnt = _mm256_add_epi64(cnt, _mm256_slli_epi64(popcnt256(fours), 2));
cnt = _mm256_add_epi64(cnt, _mm256_slli_epi64(popcnt256(twos), 1));
cnt = _mm256_add_epi64(cnt, popcnt256(ones));
for(; i < size; i++)
cnt = _mm256_add_epi64(cnt, popcnt256(data[i]));
cnt64 = (uint64_t*) &cnt;
return cnt64[0] +
cnt64[1] +
cnt64[2] +
cnt64[3];
}
/* Align memory to 32 bytes boundary */
static inline void align_avx2(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcnt64(**p);
*size -= 1;
}
for (; (uintptr_t) *p % 32; (*p) += 8)
{
*cnt += popcnt64(
*(const uint64_t*) *p);
*size -= 8;
}
}
#endif
#if defined(HAVE_AVX512)
#include <immintrin.h>
#if !defined(_MSC_VER)
__attribute__ ((target ("avx512bw")))
#endif
static inline __m512i popcnt512(__m512i v)
{
__m512i m1 = _mm512_set1_epi8(0x55);
__m512i m2 = _mm512_set1_epi8(0x33);
__m512i m4 = _mm512_set1_epi8(0x0F);
__m512i t1 = _mm512_sub_epi8(v, (_mm512_srli_epi16(v, 1) & m1));
__m512i t2 = _mm512_add_epi8(t1 & m2, (_mm512_srli_epi16(t1, 2) & m2));
__m512i t3 = _mm512_add_epi8(t2, _mm512_srli_epi16(t2, 4)) & m4;
return _mm512_sad_epu8(t3, _mm512_setzero_si512());
}
#if !defined(_MSC_VER)
__attribute__ ((target ("avx512bw")))
#endif
static inline void CSA512(__m512i* h, __m512i* l, __m512i a, __m512i b, __m512i c)
{
*l = _mm512_ternarylogic_epi32(c, b, a, 0x96);
*h = _mm512_ternarylogic_epi32(c, b, a, 0xe8);
}
/*
* AVX512 Harley-Seal popcount (4th iteration).
* The algorithm is based on the paper "Faster Population Counts
* using AVX2 Instructions" by Daniel Lemire, Nathan Kurz and
* Wojciech Mula (23 Nov 2016).
* @see https://arxiv.org/abs/1611.07612
*/
#if !defined(_MSC_VER)
__attribute__ ((target ("avx512bw")))
#endif
static inline uint64_t popcnt_avx512(const __m512i* data, const uint64_t size)
{
__m512i cnt = _mm512_setzero_si512();
__m512i ones = _mm512_setzero_si512();
__m512i twos = _mm512_setzero_si512();
__m512i fours = _mm512_setzero_si512();
__m512i eights = _mm512_setzero_si512();
__m512i sixteens = _mm512_setzero_si512();
__m512i twosA, twosB, foursA, foursB, eightsA, eightsB;
uint64_t i = 0;
uint64_t limit = size - size % 16;
uint64_t* cnt64;
for(; i < limit; i += 16)
{
CSA512(&twosA, &ones, ones, data[i+0], data[i+1]);
CSA512(&twosB, &ones, ones, data[i+2], data[i+3]);
CSA512(&foursA, &twos, twos, twosA, twosB);
CSA512(&twosA, &ones, ones, data[i+4], data[i+5]);
CSA512(&twosB, &ones, ones, data[i+6], data[i+7]);
CSA512(&foursB, &twos, twos, twosA, twosB);
CSA512(&eightsA, &fours, fours, foursA, foursB);
CSA512(&twosA, &ones, ones, data[i+8], data[i+9]);
CSA512(&twosB, &ones, ones, data[i+10], data[i+11]);
CSA512(&foursA, &twos, twos, twosA, twosB);
CSA512(&twosA, &ones, ones, data[i+12], data[i+13]);
CSA512(&twosB, &ones, ones, data[i+14], data[i+15]);
CSA512(&foursB, &twos, twos, twosA, twosB);
CSA512(&eightsB, &fours, fours, foursA, foursB);
CSA512(&sixteens, &eights, eights, eightsA, eightsB);
cnt = _mm512_add_epi64(cnt, popcnt512(sixteens));
}
cnt = _mm512_slli_epi64(cnt, 4);
cnt = _mm512_add_epi64(cnt, _mm512_slli_epi64(popcnt512(eights), 3));
cnt = _mm512_add_epi64(cnt, _mm512_slli_epi64(popcnt512(fours), 2));
cnt = _mm512_add_epi64(cnt, _mm512_slli_epi64(popcnt512(twos), 1));
cnt = _mm512_add_epi64(cnt, popcnt512(ones));
for(; i < size; i++)
cnt = _mm512_add_epi64(cnt, popcnt512(data[i]));
cnt64 = (uint64_t*) &cnt;
return cnt64[0] +
cnt64[1] +
cnt64[2] +
cnt64[3] +
cnt64[4] +
cnt64[5] +
cnt64[6] +
cnt64[7];
}
/* Align memory to 64 bytes boundary */
static inline void align_avx512(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcnt64(**p);
*size -= 1;
}
for (; (uintptr_t) *p % 64; (*p) += 8)
{
*cnt += popcnt64(
*(const uint64_t*) *p);
*size -= 8;
}
}
#endif
/* x86 CPUs */
#if defined(X86_OR_X64)
/* Align memory to 8 bytes boundary */
static inline void align_8(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; *size > 0 && (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcount64(**p);
*size -= 1;
}
}
static inline uint64_t popcount64_unrolled(const uint64_t* data, uint64_t size)
{
uint64_t i = 0;
uint64_t limit = size - size % 4;
uint64_t cnt = 0;
for (; i < limit; i += 4)
{
cnt += popcount64(data[i+0]);
cnt += popcount64(data[i+1]);
cnt += popcount64(data[i+2]);
cnt += popcount64(data[i+3]);
}
for (; i < size; i++)
cnt += popcount64(data[i]);
return cnt;
}
/*
* Count the number of 1 bits in the data array
* @data: An array
* @size: Size of data in bytes
*/
static inline uint64_t popcnt(const void* data, uint64_t size)
{
const uint8_t* ptr = (const uint8_t*) data;
uint64_t cnt = 0;
uint64_t i;
#if defined(HAVE_CPUID)
#if defined(__cplusplus)
/* C++11 thread-safe singleton */
static const int cpuid = get_cpuid();
#else
static int cpuid_ = -1;
int cpuid = cpuid_;
if (cpuid == -1)
{
cpuid = get_cpuid();
#if defined(_MSC_VER)
_InterlockedCompareExchange(&cpuid_, cpuid, -1);
#else
__sync_val_compare_and_swap(&cpuid_, -1, cpuid);
#endif
}
#endif
#endif
#if defined(HAVE_AVX512)
/* AVX512 requires arrays >= 1024 bytes */
if ((cpuid & bit_AVX512) &&
size >= 1024)
{
align_avx512(&ptr, &size, &cnt);
cnt += popcnt_avx512((const __m512i*) ptr, size / 64);
ptr += size - size % 64;
size = size % 64;
}
#endif
#if defined(HAVE_AVX2)
/* AVX2 requires arrays >= 512 bytes */
if ((cpuid & bit_AVX2) &&
size >= 512)
{
align_avx2(&ptr, &size, &cnt);
cnt += popcnt_avx2((const __m256i*) ptr, size / 32);
ptr += size - size % 32;
size = size % 32;
}
#endif
#if defined(HAVE_POPCNT)
if (cpuid & bit_POPCNT)
{
cnt += popcnt64_unrolled((const uint64_t*) ptr, size / 8);
ptr += size - size % 8;
size = size % 8;
for (i = 0; i < size; i++)
cnt += popcnt64(ptr[i]);
return cnt;
}
#endif
/* pure integer popcount algorithm */
if (size >= 8)
{
align_8(&ptr, &size, &cnt);
cnt += popcount64_unrolled((const uint64_t*) ptr, size / 8);
ptr += size - size % 8;
size = size % 8;
}
/* pure integer popcount algorithm */
for (i = 0; i < size; i++)
cnt += popcount64(ptr[i]);
return cnt;
}
#elif defined(__ARM_NEON) || \
defined(__aarch64__)
#include <arm_neon.h>
/* Align memory to 8 bytes boundary */
static inline void align_8(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; *size > 0 && (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcnt64(**p);
*size -= 1;
}
}
static inline uint64x2_t vpadalq(uint64x2_t sum, uint8x16_t t)
{
return vpadalq_u32(sum, vpaddlq_u16(vpaddlq_u8(t)));
}
/*
* Count the number of 1 bits in the data array
* @data: An array
* @size: Size of data in bytes
*/
static inline uint64_t popcnt(const void* data, uint64_t size)
{
uint64_t cnt = 0;
uint64_t chunk_size = 64;
const uint8_t* ptr = (const uint8_t*) data;
if (size >= chunk_size)
{
uint64_t i = 0;
uint64_t iters = size / chunk_size;
uint64x2_t sum = vcombine_u64(vcreate_u64(0), vcreate_u64(0));
uint8x16_t zero = vcombine_u8(vcreate_u8(0), vcreate_u8(0));
do
{
uint8x16_t t0 = zero;
uint8x16_t t1 = zero;
uint8x16_t t2 = zero;
uint8x16_t t3 = zero;
/*
* After every 31 iterations we need to add the
* temporary sums (t0, t1, t2, t3) to the total sum.
* We must ensure that the temporary sums <= 255
* and 31 * 8 bits = 248 which is OK.
*/
uint64_t limit = (i + 31 < iters) ? i + 31 : iters;
/* Each iteration processes 64 bytes */
for (; i < limit; i++)
{
uint8x16x4_t input = vld4q_u8(ptr);
ptr += chunk_size;
t0 = vaddq_u8(t0, vcntq_u8(input.val[0]));
t1 = vaddq_u8(t1, vcntq_u8(input.val[1]));
t2 = vaddq_u8(t2, vcntq_u8(input.val[2]));
t3 = vaddq_u8(t3, vcntq_u8(input.val[3]));
}
sum = vpadalq(sum, t0);
sum = vpadalq(sum, t1);
sum = vpadalq(sum, t2);
sum = vpadalq(sum, t3);
}
while (i < iters);
uint64_t tmp[2];
vst1q_u64(tmp, sum);
cnt += tmp[0];
cnt += tmp[1];
}
size %= chunk_size;
align_8(&ptr, &size, &cnt);
const uint64_t* ptr64 = (const uint64_t*) ptr;
uint64_t iters = size / 8;
for (uint64_t i = 0; i < iters; i++)
cnt += popcnt64(ptr64[i]);
ptr += size - size % 8;
size = size % 8;
for (uint64_t i = 0; i < size; i++)
cnt += popcnt64(ptr[i]);
return cnt;
}
/* all other CPUs */
#else
/* Align memory to 8 bytes boundary */
static inline void align_8(const uint8_t** p, uint64_t* size, uint64_t* cnt)
{
for (; *size > 0 && (uintptr_t) *p % 8; (*p)++)
{
*cnt += popcnt64(**p);
*size -= 1;
}
}
/*
* Count the number of 1 bits in the data array
* @data: An array
* @size: Size of data in bytes
*/
static inline uint64_t popcnt(const void* data, uint64_t size)
{
const uint8_t* ptr = (const uint8_t*) data;
uint64_t cnt = 0;
uint64_t i;
align_8(&ptr, &size, &cnt);
cnt += popcnt64_unrolled((const uint64_t*) ptr, size / 8);
ptr += size - size % 8;
size = size % 8;
for (i = 0; i < size; i++)
cnt += popcnt64(ptr[i]);
return cnt;
}
#endif
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* LIBPOPCNT_H */