update samples from Release-53 as a part of 1.19.0 SDK stable release

This commit is contained in:
amlrelsa-ms
2020-12-07 18:55:07 +00:00
parent 41366a4af0
commit 48e3e7b510
39 changed files with 371 additions and 279 deletions

View File

@@ -3,7 +3,7 @@ dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- pip<=19.3.1
- python>=3.5.2,<3.6.8
- python>=3.5.2,<3.8
- nb_conda
- boto3==1.15.18
- matplotlib==2.1.0
@@ -21,8 +21,8 @@ dependencies:
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.18.0
- azureml-widgets~=1.19.0
- pytorch-transformers==1.0.0
- spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.18.0/validated_win32_requirements.txt [--no-deps]
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.19.0/validated_win32_requirements.txt [--no-deps]

View File

@@ -3,7 +3,7 @@ dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- pip<=19.3.1
- python>=3.5.2,<3.6.8
- python>=3.5.2,<3.8
- nb_conda
- boto3==1.15.18
- matplotlib==2.1.0
@@ -21,9 +21,9 @@ dependencies:
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.18.0
- azureml-widgets~=1.19.0
- pytorch-transformers==1.0.0
- spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.18.0/validated_linux_requirements.txt [--no-deps]
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.19.0/validated_linux_requirements.txt [--no-deps]

View File

@@ -4,7 +4,7 @@ dependencies:
# Currently Azure ML only supports 3.5.2 and later.
- pip<=19.3.1
- nomkl
- python>=3.5.2,<3.6.8
- python>=3.5.2,<3.8
- nb_conda
- boto3==1.15.18
- matplotlib==2.1.0
@@ -22,8 +22,8 @@ dependencies:
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.18.0
- azureml-widgets~=1.19.0
- pytorch-transformers==1.0.0
- spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.18.0/validated_darwin_requirements.txt [--no-deps]
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.19.0/validated_darwin_requirements.txt [--no-deps]

View File

@@ -105,7 +105,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.18.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.19.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -93,7 +93,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.18.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.19.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -96,7 +96,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.18.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.19.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -81,7 +81,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.18.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.19.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -68,6 +68,7 @@
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import json\n",
"import numpy as np\n",
"import pandas as pd\n",
" \n",
@@ -92,7 +93,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.18.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.19.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -322,6 +323,24 @@
"print(best_run)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Show hyperparameters\n",
"Show the model pipeline used for the best run with its hyperparameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run_properties = json.loads(best_run.get_details()['properties']['pipeline_script'])\n",
"print(json.dumps(run_properties, indent = 1)) "
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -113,7 +113,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.18.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.19.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -3,11 +3,11 @@ from azureml.core import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.train.estimator import Estimator
from azureml.core.run import Run
from azureml.automl.core.shared import constants
def split_fraction_by_grain(df, fraction, time_column_name,
grain_column_names=None):
if not grain_column_names:
df['tmp_grain_column'] = 'grain'
grain_column_names = ['tmp_grain_column']
@@ -17,10 +17,10 @@ def split_fraction_by_grain(df, fraction, time_column_name,
.groupby(grain_column_names, group_keys=False))
df_head = df_grouped.apply(lambda dfg: dfg.iloc[:-int(len(dfg) *
fraction)] if fraction > 0 else dfg)
fraction)] if fraction > 0 else dfg)
df_tail = df_grouped.apply(lambda dfg: dfg.iloc[-int(len(dfg) *
fraction):] if fraction > 0 else dfg[:0])
fraction):] if fraction > 0 else dfg[:0])
if 'tmp_grain_column' in grain_column_names:
for df2 in (df, df_head, df_tail):
@@ -59,11 +59,13 @@ def get_result_df(remote_run):
'primary_metric', 'Score'])
goal_minimize = False
for run in children:
if('run_algorithm' in run.properties and 'score' in run.properties):
if run.get_status().lower() == constants.RunState.COMPLETE_RUN \
and 'run_algorithm' in run.properties and 'score' in run.properties:
# We only count in the completed child runs.
summary_df[run.id] = [run.id, run.properties['run_algorithm'],
run.properties['primary_metric'],
float(run.properties['score'])]
if('goal' in run.properties):
if ('goal' in run.properties):
goal_minimize = run.properties['goal'].split('_')[-1] == 'min'
summary_df = summary_df.T.sort_values(
@@ -118,7 +120,6 @@ def run_multiple_inferences(summary_df, train_experiment, test_experiment,
compute_target, script_folder, test_dataset,
lookback_dataset, max_horizon, target_column_name,
time_column_name, freq):
for run_name, run_summary in summary_df.iterrows():
print(run_name)
print(run_summary)

View File

@@ -87,7 +87,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.18.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.19.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -1,22 +1,24 @@
import argparse
import azureml.train.automl
from azureml.core import Run
from azureml.core import Dataset, Run
from sklearn.externals import joblib
parser = argparse.ArgumentParser()
parser.add_argument(
'--target_column_name', type=str, dest='target_column_name',
help='Target Column Name')
parser.add_argument(
'--test_dataset', type=str, dest='test_dataset',
help='Test Dataset')
args = parser.parse_args()
target_column_name = args.target_column_name
test_dataset_id = args.test_dataset
run = Run.get_context()
# get input dataset by name
test_dataset = run.input_datasets['test_data']
ws = run.experiment.workspace
df = test_dataset.to_pandas_dataframe().reset_index(drop=True)
# get the input dataset by id
test_dataset = Dataset.get_by_id(ws, id=test_dataset_id)
X_test_df = test_dataset.drop_columns(columns=[target_column_name]).to_pandas_dataframe().reset_index(drop=True)
y_test_df = test_dataset.with_timestamp_columns(None).keep_columns(columns=[target_column_name]).to_pandas_dataframe()

View File

@@ -1,29 +1,32 @@
from azureml.train.estimator import Estimator
from azureml.core import ScriptRunConfig
def run_rolling_forecast(test_experiment, compute_target, train_run, test_dataset,
target_column_name, inference_folder='./forecast'):
def run_rolling_forecast(test_experiment, compute_target, train_run,
test_dataset, target_column_name,
inference_folder='./forecast'):
train_run.download_file('outputs/model.pkl',
inference_folder + '/model.pkl')
inference_env = train_run.get_environment()
est = Estimator(source_directory=inference_folder,
entry_script='forecasting_script.py',
script_params={
'--target_column_name': target_column_name
},
inputs=[test_dataset.as_named_input('test_data')],
compute_target=compute_target,
environment_definition=inference_env)
config = ScriptRunConfig(source_directory=inference_folder,
script='forecasting_script.py',
arguments=['--target_column_name',
target_column_name,
'--test_dataset',
test_dataset.as_named_input(test_dataset.name)],
compute_target=compute_target,
environment=inference_env)
run = test_experiment.submit(est,
tags={
'training_run_id': train_run.id,
'run_algorithm': train_run.properties['run_algorithm'],
'valid_score': train_run.properties['score'],
'primary_metric': train_run.properties['primary_metric']
})
run = test_experiment.submit(config,
tags={'training_run_id':
train_run.id,
'run_algorithm':
train_run.properties['run_algorithm'],
'valid_score':
train_run.properties['score'],
'primary_metric':
train_run.properties['primary_metric']})
run.log("run_algorithm", run.tags['run_algorithm'])
return run

View File

@@ -97,7 +97,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.18.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.19.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -94,7 +94,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.18.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.19.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -82,7 +82,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.18.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.19.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -96,7 +96,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.18.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.19.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -96,7 +96,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.18.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.19.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -4,7 +4,7 @@ import os
import joblib
from interpret.ext.glassbox import LGBMExplainableModel
from automl.client.core.common.constants import MODEL_PATH
from azureml.automl.core.shared.constants import MODEL_PATH
from azureml.core.experiment import Experiment
from azureml.core.dataset import Dataset
from azureml.core.run import Run

View File

@@ -92,7 +92,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.18.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.19.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},