mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 01:27:06 -05:00
33 lines
1.5 KiB
Python
33 lines
1.5 KiB
Python
from azureml.core import ScriptRunConfig
|
|
|
|
|
|
def run_rolling_forecast(test_experiment, compute_target, train_run,
|
|
test_dataset, target_column_name,
|
|
inference_folder='./forecast'):
|
|
train_run.download_file('outputs/model.pkl',
|
|
inference_folder + '/model.pkl')
|
|
|
|
inference_env = train_run.get_environment()
|
|
|
|
config = ScriptRunConfig(source_directory=inference_folder,
|
|
script='forecasting_script.py',
|
|
arguments=['--target_column_name',
|
|
target_column_name,
|
|
'--test_dataset',
|
|
test_dataset.as_named_input(test_dataset.name)],
|
|
compute_target=compute_target,
|
|
environment=inference_env)
|
|
|
|
run = test_experiment.submit(config,
|
|
tags={'training_run_id':
|
|
train_run.id,
|
|
'run_algorithm':
|
|
train_run.properties['run_algorithm'],
|
|
'valid_score':
|
|
train_run.properties['score'],
|
|
'primary_metric':
|
|
train_run.properties['primary_metric']})
|
|
|
|
run.log("run_algorithm", run.tags['run_algorithm'])
|
|
return run
|