update samples from Release-146 as a part of 1.0.62 SDK release

This commit is contained in:
vizhur
2019-09-16 23:21:57 +00:00
parent e1724c8a89
commit 6bb1e2a3e3
96 changed files with 11640 additions and 2027 deletions

View File

@@ -103,7 +103,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.0.60 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.0.62 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -21,5 +21,6 @@ dependencies:
- azureml-train-automl
- azureml-widgets
- azureml-explain-model
- azureml-contrib-explain-model
- pandas_ml

View File

@@ -22,5 +22,6 @@ dependencies:
- azureml-train-automl
- azureml-widgets
- azureml-explain-model
- azureml-contrib-explain-model
- pandas_ml

View File

@@ -92,8 +92,6 @@
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-classification-bmarketing'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-classification-bankmarketing'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
@@ -103,7 +101,6 @@
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -164,20 +161,7 @@
"source": [
"# Data\n",
"\n",
"Here load the data in the get_data() script to be utilized in azure compute. To do this first load all the necessary libraries and dependencies to set up paths for the data and to create the conda_Run_config."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
"Create a run configuration for the remote run."
]
},
{
@@ -207,7 +191,7 @@
"source": [
"### Load Data\n",
"\n",
"Here we create the script to be run in azure comput for loading the data, we load the bank marketing dataset into X_train and y_train. Next X_train and y_train is returned for training the model."
"Load the bank marketing dataset into X_train and y_train. X_train contains the training features, which are inputs to the model. y_train contains the training labels, which are the expected output of the model."
]
},
{
@@ -240,7 +224,6 @@
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
@@ -263,7 +246,6 @@
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" X = X_train,\n",
" y = y_train,\n",

View File

@@ -92,8 +92,6 @@
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-classification-ccard'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-classification-creditcard'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
@@ -103,7 +101,6 @@
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -164,20 +161,7 @@
"source": [
"# Data\n",
"\n",
"Here load the data in the get_data script to be utilized in azure compute. To do this, first load all the necessary libraries and dependencies to set up paths for the data and to create the conda_run_config."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
"Create a run configuration for the remote run."
]
},
{
@@ -207,7 +191,7 @@
"source": [
"### Load Data\n",
"\n",
"Here create the script to be run in azure compute for loading the data, load the credit card dataset into cards and store the Class column (y) in the y variable and store the remaining data in the x variable. Next split the data using random_split and return X_train and y_train for training the model."
"Load the credit card dataset into X and y. X contains the features, which are inputs to the model. y contains the labels, which are the expected output of the model. Next split the data using random_split and return X_train and y_train for training the model."
]
},
{
@@ -241,7 +225,6 @@
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
@@ -270,8 +253,7 @@
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors_20190417.log',\n",
" path = project_folder,\n",
" debug_log = 'automl_errors.log',\n",
" run_configuration=conda_run_config,\n",
" X = X_train,\n",
" y = y_train,\n",

View File

@@ -92,8 +92,6 @@
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-classification-deployment'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-classification-deployment'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
@@ -103,7 +101,6 @@
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -126,8 +123,7 @@
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|"
]
},
{
@@ -148,8 +144,7 @@
" iterations = 10,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
" y = y_train)"
]
},
{

View File

@@ -89,9 +89,8 @@
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"# Choose a name for the experiment.\n",
"experiment_name = 'automl-classification-onnx'\n",
"project_folder = './sample_projects/automl-classification-onnx'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -101,7 +100,6 @@
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -127,9 +125,7 @@
"X_train, X_test, y_train, y_test = train_test_split(iris.data, \n",
" iris.target, \n",
" test_size=0.2, \n",
" random_state=0)\n",
"\n",
"\n"
" random_state=0)"
]
},
{
@@ -170,8 +166,7 @@
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**enable_onnx_compatible_models**|Enable the ONNX compatible models in the experiment.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
"|**enable_onnx_compatible_models**|Enable the ONNX compatible models in the experiment.|"
]
},
{
@@ -196,8 +191,7 @@
" X = X_train, \n",
" y = y_train,\n",
" preprocess=True,\n",
" enable_onnx_compatible_models=True,\n",
" path = project_folder)"
" enable_onnx_compatible_models=True)"
]
},
{

View File

@@ -100,9 +100,8 @@
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"# Choose a name for the experiment.\n",
"experiment_name = 'automl-local-whitelist'\n",
"project_folder = './sample_projects/automl-local-whitelist'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -112,7 +111,6 @@
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -158,7 +156,6 @@
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"|**whitelist_models**|List of models that AutoML should use. The possible values are listed [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings).|"
]
},
@@ -177,8 +174,7 @@
" X = X_train, \n",
" y = y_train,\n",
" enable_tf=True,\n",
" whitelist_models=whitelist_models,\n",
" path = project_folder)"
" whitelist_models=whitelist_models)"
]
},
{

View File

@@ -113,9 +113,8 @@
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"# Choose a name for the experiment.\n",
"experiment_name = 'automl-classification'\n",
"project_folder = './sample_projects/automl-classification'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -125,7 +124,6 @@
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",

View File

@@ -87,8 +87,6 @@
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-dataset-remote-bai'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-dataprep-remote-bai'\n",
" \n",
"experiment = Experiment(ws, experiment_name)\n",
" \n",
@@ -98,7 +96,6 @@
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -253,7 +250,6 @@
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" X = X,\n",
" y = y,\n",

View File

@@ -87,8 +87,6 @@
" \n",
"# choose a name for experiment\n",
"experiment_name = 'automl-dataset-local'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-dataset-local'\n",
" \n",
"experiment = Experiment(ws, experiment_name)\n",
" \n",
@@ -98,7 +96,6 @@
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",

View File

@@ -97,8 +97,6 @@
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'automl-bikeshareforecasting'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-bikeshareforecasting'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -108,7 +106,6 @@
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -225,7 +222,6 @@
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**country_or_region**|The country/region used to generate holiday features. These should be ISO 3166 two-letter country/region codes (i.e. 'US', 'GB').|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. \n",
"\n",
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the iteration_timeout_minutes parameter value to get results."
]
@@ -253,8 +249,7 @@
" iteration_timeout_minutes=5,\n",
" X=X_train,\n",
" y=y_train,\n",
" n_cross_validations=3, \n",
" path=project_folder,\n",
" n_cross_validations=3,\n",
" verbosity=logging.INFO,\n",
" **automl_settings)"
]

View File

@@ -93,8 +93,6 @@
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'automl-energydemandforecasting'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-energydemandforecasting'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -104,7 +102,6 @@
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -213,8 +210,7 @@
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**n_cross_validations**|Number of cross validation splits. Rolling Origin Validation is used to split time-series in a temporally consistent way.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
"|**n_cross_validations**|Number of cross validation splits. Rolling Origin Validation is used to split time-series in a temporally consistent way.|"
]
},
{
@@ -237,7 +233,6 @@
" X=X_train,\n",
" y=y_train,\n",
" n_cross_validations=3,\n",
" path=project_folder,\n",
" verbosity = logging.INFO,\n",
" **time_series_settings)"
]
@@ -490,7 +485,6 @@
" X=X_train,\n",
" y=y_train,\n",
" n_cross_validations=3,\n",
" path=project_folder,\n",
" verbosity=logging.INFO,\n",
" **time_series_settings_with_lags)"
]
@@ -558,7 +552,21 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### What features matter for the forecast?"
"### What features matter for the forecast?\n",
"The following steps will allow you to compute and visualize engineered feature importance based on your test data for forecasting. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Setup the model explanations for AutoML models\n",
"The *fitted_model* can generate the following which will be used for getting the engineered and raw feature explanations using *automl_setup_model_explanations*:-\n",
"1. Featurized data from train samples/test samples \n",
"2. Gather engineered and raw feature name lists\n",
"3. Find the classes in your labeled column in classification scenarios\n",
"\n",
"The *automl_explainer_setup_obj* contains all the structures from above list. "
]
},
{
@@ -567,14 +575,74 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.automlexplainer import explain_model\n",
"\n",
"# feature names are everything in the transformed data except the target\n",
"features = X_trans_lags.columns[:-1]\n",
"expl = explain_model(fitted_model_lags, X_train.copy(), X_test.copy(), features=features, best_run=best_run_lags, y_train=y_train)\n",
"# unpack the tuple\n",
"shap_values, expected_values, feat_overall_imp, feat_names, per_class_summary, per_class_imp = expl\n",
"best_run_lags"
"from azureml.train.automl.automl_explain_utilities import AutoMLExplainerSetupClass, automl_setup_model_explanations\n",
"automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, X=X_train.copy(), \n",
" X_test=X_test.copy(), y=y_train, \n",
" task='forecasting')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Initialize the Mimic Explainer for feature importance\n",
"For explaining the AutoML models, use the *MimicWrapper* from *azureml.explain.model* package. The *MimicWrapper* can be initialized with fields in *automl_explainer_setup_obj*, your workspace and a LightGBM model which acts as a surrogate model to explain the AutoML model (*fitted_model* here). The *MimicWrapper* also takes the *best_run* object where the raw and engineered explanations will be uploaded."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel\n",
"from azureml.explain.model.mimic_wrapper import MimicWrapper\n",
"explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator, LGBMExplainableModel, \n",
" init_dataset=automl_explainer_setup_obj.X_transform, run=best_run,\n",
" features=automl_explainer_setup_obj.engineered_feature_names, \n",
" feature_maps=[automl_explainer_setup_obj.feature_map])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Use Mimic Explainer for computing and visualizing engineered feature importance\n",
"The *explain()* method in *MimicWrapper* can be called with the transformed test samples to get the feature importance for the generated engineered features. You can also use *ExplanationDashboard* to view the dash board visualization of the feature importance values of the generated engineered features by AutoML featurizers."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"engineered_explanations = explainer.explain(['local', 'global'], eval_dataset=automl_explainer_setup_obj.X_test_transform)\n",
"print(engineered_explanations.get_feature_importance_dict())\n",
"from azureml.contrib.explain.model.visualize import ExplanationDashboard\n",
"ExplanationDashboard(engineered_explanations, automl_explainer_setup_obj.automl_estimator, automl_explainer_setup_obj.X_test_transform)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Use Mimic Explainer for computing and visualizing raw feature importance\n",
"The *explain()* method in *MimicWrapper* can be again called with the transformed test samples and setting *get_raw* to *True* to get the feature importance for the raw features. You can also use *ExplanationDashboard* to view the dash board visualization of the feature importance values of the raw features."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raw_explanations = explainer.explain(['local', 'global'], get_raw=True, \n",
" raw_feature_names=automl_explainer_setup_obj.raw_feature_names,\n",
" eval_dataset=automl_explainer_setup_obj.X_test_transform)\n",
"print(raw_explanations.get_feature_importance_dict())\n",
"from azureml.contrib.explain.model.visualize import ExplanationDashboard\n",
"ExplanationDashboard(raw_explanations, automl_explainer_setup_obj.automl_pipeline, automl_explainer_setup_obj.X_test_raw)"
]
},
{

View File

@@ -8,3 +8,4 @@ dependencies:
- pandas_ml
- statsmodels
- azureml-explain-model
- azureml-contrib-explain-model

View File

@@ -89,8 +89,6 @@
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'automl-ojforecasting'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-ojforecasting'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -100,7 +98,6 @@
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -247,7 +244,6 @@
"|**enable_voting_ensemble**|Allow AutoML to create a Voting ensemble of the best performing models\n",
"|**enable_stack_ensemble**|Allow AutoML to create a Stack ensemble of the best performing models\n",
"|**debug_log**|Log file path for writing debugging information\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"|**time_column_name**|Name of the datetime column in the input data|\n",
"|**grain_column_names**|Name(s) of the columns defining individual series in the input data|\n",
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|\n",
@@ -276,7 +272,6 @@
" n_cross_validations=3,\n",
" enable_voting_ensemble=False,\n",
" enable_stack_ensemble=False,\n",
" path=project_folder,\n",
" verbosity=logging.INFO,\n",
" **time_series_settings)"
]

View File

@@ -93,7 +93,6 @@
"\n",
"# Choose a name for the experiment.\n",
"experiment_name = 'automl-local-missing-data'\n",
"project_folder = './sample_projects/automl-local-missing-data'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -103,7 +102,6 @@
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -166,8 +164,7 @@
"|**experiment_exit_score**|*double* value indicating the target for *primary_metric*. <br>Once the target is surpassed the run terminates.|\n",
"|**blacklist_models**|*List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run.<br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGD</i><br><i>MultinomialNaiveBayes</i><br><i>BernoulliNaiveBayes</i><br><i>SVM</i><br><i>LinearSVM</i><br><i>KNN</i><br><i>DecisionTree</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>GradientBoosting</i><br><i>TensorFlowDNN</i><br><i>TensorFlowLinearClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i>|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|"
]
},
{
@@ -186,8 +183,7 @@
" blacklist_models = ['KNN','LinearSVM'],\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
" y = y_train)"
]
},
{

View File

@@ -69,7 +69,8 @@
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.core.dataset import Dataset"
]
},
{
@@ -107,29 +108,42 @@
"## Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Training Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"\n",
"iris = datasets.load_iris()\n",
"y = iris.target\n",
"X = iris.data\n",
"\n",
"features = iris.feature_names\n",
"\n",
"from sklearn.model_selection import train_test_split\n",
"X_train, X_test, y_train, y_test = train_test_split(X,\n",
" y,\n",
" test_size=0.1,\n",
" random_state=100,\n",
" stratify=y)\n",
"\n",
"X_train = pd.DataFrame(X_train, columns=features)\n",
"X_test = pd.DataFrame(X_test, columns=features)"
"train_data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_train.csv\"\n",
"train_dataset = Dataset.Tabular.from_delimited_files(train_data)\n",
"X_train = train_dataset.drop_columns(columns=['y']).to_pandas_dataframe()\n",
"y_train = train_dataset.keep_columns(columns=['y'], validate=True).to_pandas_dataframe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_validate.csv\"\n",
"test_dataset = Dataset.Tabular.from_delimited_files(test_data)\n",
"X_test = test_dataset.drop_columns(columns=['y']).to_pandas_dataframe()\n",
"y_test = test_dataset.keep_columns(columns=['y'], validate=True).to_pandas_dataframe()"
]
},
{
@@ -148,8 +162,6 @@
"|**iterations**|Number of iterations. In each iteration Auto ML trains the data with a specific pipeline|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**X_valid**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y_valid**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**model_explainability**|Indicate to explain each trained pipeline or not |\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. |"
]
@@ -166,10 +178,10 @@
" iteration_timeout_minutes = 200,\n",
" iterations = 10,\n",
" verbosity = logging.INFO,\n",
" preprocess = True,\n",
" X = X_train, \n",
" y = y_train,\n",
" X_valid = X_test,\n",
" y_valid = y_test,\n",
" n_cross_validations = 5,\n",
" model_explainability=True,\n",
" path=project_folder)"
]
@@ -197,7 +209,7 @@
"metadata": {},
"outputs": [],
"source": [
"local_run"
"best_run, fitted_model = local_run.get_output()"
]
},
{
@@ -302,19 +314,21 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Beside retrieve the existed model explanation information, explain the model with different train/test data"
"### Computing model explanations and visualizing the explanations using azureml-explain-model package\n",
"Beside retrieve the existed model explanation information, explain the model with different train/test data. The following steps will allow you to compute and visualize engineered feature importance and raw feature importance based on your test data. "
]
},
{
"cell_type": "code",
"execution_count": null,
"cell_type": "markdown",
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.automlexplainer import explain_model\n",
"#### Setup the model explanations for AutoML models\n",
"The *fitted_model* can generate the following which will be used for getting the engineered and raw feature explanations using *automl_setup_model_explanations*:-\n",
"1. Featurized data from train samples/test samples \n",
"2. Gather engineered and raw feature name lists\n",
"3. Find the classes in your labeled column in classification scenarios\n",
"\n",
"shap_values, expected_values, overall_summary, overall_imp, per_class_summary, per_class_imp = \\\n",
" explain_model(fitted_model, X_train, X_test, features=features)"
"The *automl_explainer_setup_obj* contains all the structures from above list. "
]
},
{
@@ -323,8 +337,116 @@
"metadata": {},
"outputs": [],
"source": [
"print(overall_summary)\n",
"print(overall_imp)"
"from azureml.train.automl.automl_explain_utilities import AutoMLExplainerSetupClass, automl_setup_model_explanations\n",
"\n",
"automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, X=X_train, \n",
" X_test=X_test, y=y_train, \n",
" task='classification')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Initialize the Mimic Explainer for feature importance\n",
"For explaining the AutoML models, use the *MimicWrapper* from *azureml.explain.model* package. The *MimicWrapper* can be initialized with fields in *automl_explainer_setup_obj*, your workspace and a LightGBM model which acts as a surrogate model to explain the AutoML model (*fitted_model* here). The *MimicWrapper* also takes the *best_run* object where the raw and engineered explanations will be uploaded."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel\n",
"from azureml.explain.model.mimic_wrapper import MimicWrapper\n",
"explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator, LGBMExplainableModel, \n",
" init_dataset=automl_explainer_setup_obj.X_transform, run=best_run,\n",
" features=automl_explainer_setup_obj.engineered_feature_names, \n",
" feature_maps=[automl_explainer_setup_obj.feature_map],\n",
" classes=automl_explainer_setup_obj.classes)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Use Mimic Explainer for computing and visualizing engineered feature importance\n",
"The *explain()* method in *MimicWrapper* can be called with the transformed test samples to get the feature importance for the generated engineered features. You can also use *ExplanationDashboard* to view the dash board visualization of the feature importance values of the generated engineered features by AutoML featurizers."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"engineered_explanations = explainer.explain(['local', 'global'], eval_dataset=automl_explainer_setup_obj.X_test_transform)\n",
"print(engineered_explanations.get_feature_importance_dict())\n",
"from azureml.contrib.explain.model.visualize import ExplanationDashboard\n",
"ExplanationDashboard(engineered_explanations, automl_explainer_setup_obj.automl_estimator, automl_explainer_setup_obj.X_test_transform)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Use Mimic Explainer for computing and visualizing raw feature importance\n",
"The *explain()* method in *MimicWrapper* can be again called with the transformed test samples and setting *get_raw* to *True* to get the feature importance for the raw features. You can also use *ExplanationDashboard* to view the dash board visualization of the feature importance values of the raw features."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raw_explanations = explainer.explain(['local', 'global'], get_raw=True, \n",
" raw_feature_names=automl_explainer_setup_obj.raw_feature_names,\n",
" eval_dataset=automl_explainer_setup_obj.X_test_transform)\n",
"print(raw_explanations.get_feature_importance_dict())\n",
"from azureml.contrib.explain.model.visualize import ExplanationDashboard\n",
"ExplanationDashboard(raw_explanations, automl_explainer_setup_obj.automl_pipeline, automl_explainer_setup_obj.X_test_raw)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download engineered feature importance from artifact store\n",
"You can use *ExplanationClient* to download the engineered feature explanations from the artifact store of the *best_run*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.explain.model._internal.explanation_client import ExplanationClient\n",
"client = ExplanationClient.from_run(best_run)\n",
"engineered_explanations = client.download_model_explanation(raw=False)\n",
"print(engineered_explanations.get_feature_importance_dict())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download raw feature importance from artifact store\n",
"You can use *ExplanationClient* to download the raw feature explanations from the artifact store of the *best_run*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.explain.model._internal.explanation_client import ExplanationClient\n",
"client = ExplanationClient.from_run(best_run)\n",
"raw_explanations = client.download_model_explanation(raw=True)\n",
"print(raw_explanations.get_feature_importance_dict())"
]
}
],

View File

@@ -7,3 +7,4 @@ dependencies:
- matplotlib
- pandas_ml
- azureml-explain-model
- azureml-contrib-explain-model

View File

@@ -87,9 +87,8 @@
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"# Choose a name for the experiment.\n",
"experiment_name = 'automl-regression-concrete'\n",
"project_folder = './sample_projects/automl-regression-concrete'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -99,7 +98,6 @@
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -160,20 +158,7 @@
"source": [
"# Data\n",
"\n",
"Here load the data in the get_data script to be utilized in azure compute. To do this, first load all the necessary libraries and dependencies to set up paths for the data and to create the conda_run_config."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
"Create a run configuration for the remote run."
]
},
{
@@ -203,7 +188,7 @@
"source": [
"### Load Data\n",
"\n",
"Here create the script to be run in azure compute for loading the data, load the concrete strength dataset into the X and y variables. Next, split the data using random_split and return X_train and y_train for training the model. Finally, return X_train and y_train for training the model."
"Load the concrete strength dataset into X and y. X contains the training features, which are inputs to the model. y contains the training labels, which are the expected output of the model."
]
},
{
@@ -238,7 +223,6 @@
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
@@ -268,7 +252,6 @@
"\n",
"automl_config = AutoMLConfig(task = 'regression',\n",
" debug_log = 'automl.log',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" X = X_train,\n",
" y = y_train,\n",

View File

@@ -87,9 +87,8 @@
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"# Choose a name for the experiment.\n",
"experiment_name = 'automl-regression-hardware'\n",
"project_folder = './sample_projects/automl-remote-regression'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -99,7 +98,6 @@
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -160,20 +158,7 @@
"source": [
"# Data\n",
"\n",
"Here load the data in the get_data script to be utilized in azure compute. To do this, first load all the necessary libraries and dependencies to set up paths for the data and to create the conda_run_config."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
"Create a run configuration for the remote run."
]
},
{
@@ -203,7 +188,7 @@
"source": [
"### Load Data\n",
"\n",
"Here create the script to be run in azure compute for loading the data, load the hardware dataset into the X and y variables. Next split the data using random_split and return X_train and y_train for training the model."
"Load the hardware performance dataset into X and y. X contains the training features, which are inputs to the model. y contains the training labels, which are the expected output of the model."
]
},
{
@@ -239,7 +224,6 @@
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
@@ -268,8 +252,7 @@
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'regression',\n",
" debug_log = 'automl_errors_20190417.log',\n",
" path = project_folder,\n",
" debug_log = 'automl_errors.log',\n",
" run_configuration=conda_run_config,\n",
" X = X_train,\n",
" y = y_train,\n",

View File

@@ -84,9 +84,8 @@
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"# Choose a name for the experiment.\n",
"experiment_name = 'automl-local-regression'\n",
"project_folder = './sample_projects/automl-local-regression'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -96,7 +95,6 @@
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -144,8 +142,7 @@
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|"
]
},
{
@@ -162,8 +159,7 @@
" debug_log = 'automl.log',\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
" y = y_train)"
]
},
{

View File

@@ -543,7 +543,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.6"
"version": "3.7.3"
}
},
"nbformat": 4,

View File

@@ -70,23 +70,11 @@
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration notebook](../../../configuration.ipynb) first if you haven't.\n",
"\n",
"\n",
"You will need to have extensions enabled prior to jupyter kernel starting to see the visualization dashboard.\n",
"```\n",
"(myenv) $ jupyter nbextension install --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"(myenv) $ jupyter nbextension enable --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"```\n",
"Or\n",
"\n",
"```\n",
"(myenv) $ jupyter nbextension install azureml.contrib.explain.model.visualize --user --py\n",
"(myenv) $ jupyter nbextension enable azureml.contrib.explain.model.visualize --user --py\n",
"```\n",
"\n",
"If you are using Jupyter Labs run the following commands instead:\n",
"If you are using Jupyter notebooks, the extensions should be installed automatically with the package.\n",
"If you are using Jupyter Labs run the following command:\n",
"```\n",
"(myenv) $ jupyter labextension install @jupyter-widgets/jupyterlab-manager\n",
"(myenv) $ jupyter labextension install microsoft-mli-widget\n",
"```"
"```\n"
]
},
{
@@ -634,7 +622,7 @@
"# retrieve model for visualization and deployment\n",
"from azureml.core.model import Model\n",
"from sklearn.externals import joblib\n",
"original_model = Model(ws, 'original_model')\n",
"original_model = Model(ws, 'model_explain_model_on_amlcomp')\n",
"model_path = original_model.download(exist_ok=True)\n",
"original_model = joblib.load(model_path)"
]

View File

@@ -46,7 +46,8 @@ with open(model_file_name, 'wb') as file:
# register the model
run.upload_file('original_model.pkl', os.path.join('./outputs/', model_file_name))
original_model = run.register_model(model_name='original_model', model_path='original_model.pkl')
original_model = run.register_model(model_name='model_explain_model_on_amlcomp',
model_path='original_model.pkl')
# Explain predictions on your local machine
tabular_explainer = TabularExplainer(model, X_train, features=boston_data.feature_names)

View File

@@ -60,25 +60,11 @@
"2. Run 'explain_model' with AML Run History, which leverages run history service to store and manage the explanation data\n",
"---\n",
"\n",
"## Setup\n",
"\n",
"You will need to have extensions enabled prior to jupyter kernel starting to see the visualization dashboard.\n",
"```\n",
"(myenv) $ jupyter nbextension install --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"(myenv) $ jupyter nbextension enable --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"```\n",
"Or\n",
"\n",
"```\n",
"(myenv) $ jupyter nbextension install azureml.contrib.explain.model.visualize --user --py\n",
"(myenv) $ jupyter nbextension enable azureml.contrib.explain.model.visualize --user --py\n",
"```\n",
"\n",
"If you are using Jupyter Labs run the following commands instead:\n",
"Setup: If you are using Jupyter notebooks, the extensions should be installed automatically with the package.\n",
"If you are using Jupyter Labs run the following command:\n",
"```\n",
"(myenv) $ jupyter labextension install @jupyter-widgets/jupyterlab-manager\n",
"(myenv) $ jupyter labextension install microsoft-mli-widget\n",
"```"
"```\n"
]
},
{

View File

@@ -0,0 +1,33 @@
import json
import numpy as np
import pandas as pd
import os
import pickle
from sklearn.externals import joblib
from sklearn.linear_model import LogisticRegression
from azureml.core.model import Model
def init():
global original_model
global scoring_explainer
# Retrieve the path to the model file using the model name
# Assume original model is named original_prediction_model
original_model_path = Model.get_model_path('local_deploy_model')
scoring_explainer_path = Model.get_model_path('IBM_attrition_explainer')
original_model = joblib.load(original_model_path)
scoring_explainer = joblib.load(scoring_explainer_path)
def run(raw_data):
# Get predictions and explanations for each data point
data = pd.read_json(raw_data)
# Make prediction
predictions = original_model.predict(data)
# Retrieve model explanations
local_importance_values = scoring_explainer.explain(data)
# You can return any data type as long as it is JSON-serializable
return {'predictions': predictions.tolist(), 'local_importance_values': local_importance_values}

View File

@@ -0,0 +1,33 @@
import json
import numpy as np
import pandas as pd
import os
import pickle
from sklearn.externals import joblib
from sklearn.linear_model import LogisticRegression
from azureml.core.model import Model
def init():
global original_model
global scoring_explainer
# Retrieve the path to the model file using the model name
# Assume original model is named original_prediction_model
original_model_path = Model.get_model_path('amlcompute_deploy_model')
scoring_explainer_path = Model.get_model_path('IBM_attrition_explainer')
original_model = joblib.load(original_model_path)
scoring_explainer = joblib.load(scoring_explainer_path)
def run(raw_data):
# Get predictions and explanations for each data point
data = pd.read_json(raw_data)
# Make prediction
predictions = original_model.predict(data)
# Retrieve model explanations
local_importance_values = scoring_explainer.explain(data)
# You can return any data type as long as it is JSON-serializable
return {'predictions': predictions.tolist(), 'local_importance_values': local_importance_values}

View File

@@ -268,7 +268,8 @@
"\n",
"# Register original model\n",
"run.upload_file('original_model.pkl', os.path.join('./outputs/', model_file_name))\n",
"original_model = run.register_model(model_name='original_model', model_path='original_model.pkl')\n",
"original_model = run.register_model(model_name='local_deploy_model', \n",
" model_path='original_model.pkl')\n",
"\n",
"# Register scoring explainer\n",
"run.upload_file('IBM_attrition_explainer.pkl', 'scoring_explainer.pkl')\n",
@@ -383,7 +384,7 @@
"from azureml.core.image import ContainerImage\n",
"\n",
"# Use the custom scoring, docker, and conda files we created above\n",
"image_config = ContainerImage.image_configuration(execution_script=\"score.py\",\n",
"image_config = ContainerImage.image_configuration(execution_script=\"score_local_explain.py\",\n",
" docker_file=\"dockerfile\", \n",
" runtime=\"python\", \n",
" conda_file=\"myenv.yml\")\n",

View File

@@ -309,7 +309,7 @@
"# retrieve model for visualization and deployment\n",
"from azureml.core.model import Model\n",
"from sklearn.externals import joblib\n",
"original_model = Model(ws, 'original_model')\n",
"original_model = Model(ws, 'amlcompute_deploy_model')\n",
"model_path = original_model.download(exist_ok=True)\n",
"original_svm_model = joblib.load(model_path)"
]
@@ -447,7 +447,7 @@
"from azureml.core.image import ContainerImage\n",
"\n",
"# Use the custom scoring, docker, and conda files we created above\n",
"image_config = ContainerImage.image_configuration(execution_script=\"score.py\",\n",
"image_config = ContainerImage.image_configuration(execution_script=\"score_remote_explain.py\",\n",
" docker_file=\"dockerfile\", \n",
" runtime=\"python\", \n",
" conda_file=\"myenv.yml\")\n",

View File

@@ -99,7 +99,8 @@ with open(model_file_name, 'wb') as file:
# register the model with the model management service for later use
run.upload_file('original_model.pkl', os.path.join(OUTPUT_DIR, model_file_name))
original_model = run.register_model(model_name='original_model', model_path='original_model.pkl')
original_model = run.register_model(model_name='amlcompute_deploy_model',
model_path='original_model.pkl')
# create an explainer to validate or debug the model
tabular_explainer = TabularExplainer(model,

View File

@@ -62,24 +62,10 @@
"4. Visualize the global and local explanations with the visualization dashboard.\n",
"---\n",
"\n",
"## Setup\n",
"\n",
"You will need to have extensions enabled prior to jupyter kernel starting to see the visualization dashboard.\n",
"```\n",
"(myenv) $ jupyter nbextension install --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"(myenv) $ jupyter nbextension enable --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"```\n",
"Or\n",
"\n",
"```\n",
"(myenv) $ jupyter nbextension install azureml.contrib.explain.model.visualize --user --py\n",
"(myenv) $ jupyter nbextension enable azureml.contrib.explain.model.visualize --user --py\n",
"```\n",
"\n",
"If you are using Jupyter Labs run the following commands instead:\n",
"Setup: If you are using Jupyter notebooks, the extensions should be installed automatically with the package.\n",
"If you are using Jupyter Labs run the following command:\n",
"```\n",
"(myenv) $ jupyter labextension install @jupyter-widgets/jupyterlab-manager\n",
"(myenv) $ jupyter labextension install microsoft-mli-widget\n",
"```\n"
]
},

View File

@@ -59,24 +59,10 @@
"3. Visualize the global and local explanations with the visualization dashboard.\n",
"---\n",
"\n",
"## Setup\n",
"\n",
"You will need to have extensions enabled prior to jupyter kernel starting to see the visualization dashboard.\n",
"```\n",
"(myenv) $ jupyter nbextension install --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"(myenv) $ jupyter nbextension enable --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"```\n",
"Or\n",
"\n",
"```\n",
"(myenv) $ jupyter nbextension install azureml.contrib.explain.model.visualize --user --py\n",
"(myenv) $ jupyter nbextension enable azureml.contrib.explain.model.visualize --user --py\n",
"```\n",
"\n",
"If you are using Jupyter Labs run the following commands instead:\n",
"Setup: If you are using Jupyter notebooks, the extensions should be installed automatically with the package.\n",
"If you are using Jupyter Labs run the following command:\n",
"```\n",
"(myenv) $ jupyter labextension install @jupyter-widgets/jupyterlab-manager\n",
"(myenv) $ jupyter labextension install microsoft-mli-widget\n",
"```\n"
]
},

View File

@@ -60,24 +60,10 @@
"3. Visualize the global and local explanations with the visualization dashboard.\n",
"---\n",
"\n",
"## Setup\n",
"\n",
"You will need to have extensions enabled prior to jupyter kernel starting to see the visualization dashboard.\n",
"```\n",
"(myenv) $ jupyter nbextension install --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"(myenv) $ jupyter nbextension enable --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"```\n",
"Or\n",
"\n",
"```\n",
"(myenv) $ jupyter nbextension install azureml.contrib.explain.model.visualize --user --py\n",
"(myenv) $ jupyter nbextension enable azureml.contrib.explain.model.visualize --user --py\n",
"```\n",
"\n",
"If you are using Jupyter Labs run the following commands instead:\n",
"Setup: If you are using Jupyter notebooks, the extensions should be installed automatically with the package.\n",
"If you are using Jupyter Labs run the following command:\n",
"```\n",
"(myenv) $ jupyter labextension install @jupyter-widgets/jupyterlab-manager\n",
"(myenv) $ jupyter labextension install microsoft-mli-widget\n",
"```\n"
]
},

View File

@@ -59,24 +59,10 @@
"3. Visualize the global and local explanations with the visualization dashboard.\n",
"---\n",
"\n",
"## Setup\n",
"\n",
"You will need to have extensions enabled prior to jupyter kernel starting to see the visualization dashboard.\n",
"```\n",
"(myenv) $ jupyter nbextension install --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"(myenv) $ jupyter nbextension enable --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"```\n",
"Or\n",
"\n",
"```\n",
"(myenv) $ jupyter nbextension install azureml.contrib.explain.model.visualize --user --py\n",
"(myenv) $ jupyter nbextension enable azureml.contrib.explain.model.visualize --user --py\n",
"```\n",
"\n",
"If you are using Jupyter Labs run the following commands instead:\n",
"Setup: If you are using Jupyter notebooks, the extensions should be installed automatically with the package.\n",
"If you are using Jupyter Labs run the following command:\n",
"```\n",
"(myenv) $ jupyter labextension install @jupyter-widgets/jupyterlab-manager\n",
"(myenv) $ jupyter labextension install microsoft-mli-widget\n",
"```\n"
]
},

View File

@@ -61,24 +61,10 @@
"4. Visualize the global and local explanations with the visualization dashboard.\n",
"---\n",
"\n",
"## Setup\n",
"\n",
"You will need to have extensions enabled prior to jupyter kernel starting to see the visualization dashboard.\n",
"```\n",
"(myenv) $ jupyter nbextension install --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"(myenv) $ jupyter nbextension enable --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"```\n",
"Or\n",
"\n",
"```\n",
"(myenv) $ jupyter nbextension install azureml.contrib.explain.model.visualize --user --py\n",
"(myenv) $ jupyter nbextension enable azureml.contrib.explain.model.visualize --user --py\n",
"```\n",
"\n",
"If you are using Jupyter Labs run the following commands instead:\n",
"Setup: If you are using Jupyter notebooks, the extensions should be installed automatically with the package.\n",
"If you are using Jupyter Labs run the following command:\n",
"```\n",
"(myenv) $ jupyter labextension install @jupyter-widgets/jupyterlab-manager\n",
"(myenv) $ jupyter labextension install microsoft-mli-widget\n",
"```\n"
]
},

View File

@@ -36,8 +36,7 @@ Azure Machine Learning Pipelines optimize for simplicity, speed, and efficiency.
In this directory, there are two types of notebooks:
* The first type of notebooks will introduce you to core Azure Machine Learning Pipelines features. These notebooks below belong in this category, and are designed to go in sequence; they're all located in the "intro-to-pipelines" folder:
Take a look at [intro-to-pipelines](./intro-to-pipelines/) for the list of notebooks that introduce Azure Machine Learning concepts for you.
* The first type of notebooks will introduce you to core Azure Machine Learning Pipelines features. Notebooks in this category are designed to go in sequence; they're all located in the [intro-to-pipelines](./intro-to-pipelines/) folder.
* The second type of notebooks illustrate more sophisticated scenarios, and are independent of each other. These notebooks include:

View File

@@ -15,6 +15,7 @@ These notebooks below are designed to go in sequence.
10. [aml-pipelines-setup-schedule-for-a-published-pipeline.ipynb](https://aka.ms/pl-schedule): Once you publish a Pipeline, you can schedule it to trigger based on an interval or on data change in a defined datastore.
11. [aml-pipelines-with-automated-machine-learning-step.ipynb](https://aka.ms/pl-automl): AutoMLStep in Pipelines shows how you can do automated machine learning using Pipelines.
12. [aml-pipelines-setup-versioned-pipeline-endpoints.ipynb](https://aka.ms/pl-ver-endpoint): This notebook shows how you can setup PipelineEndpoint and submit a Pipeline using the PipelineEndpoint.
13. [aml-pipelines-showcasing-datapath-and-pipelineparameter.ipynb](https://aka.ms/pl-datapath): This notebook showcases how to use DataPath and PipelineParameter in AML Pipeline.
14. [aml-pipelines-how-to-use-pipeline-drafts.ipynb](http://aka.ms/pl-pl-draft): This notebook shows how to use Pipeline Drafts. Pipeline Drafts are mutable pipelines which can be used to submit runs and create Published Pipelines.
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/README.png)

View File

@@ -333,7 +333,7 @@
" policy=early_termination_policy,\n",
" primary_metric_name='validation_acc', \n",
" primary_metric_goal=PrimaryMetricGoal.MAXIMIZE, \n",
" max_total_runs=10,\n",
" max_total_runs=4,\n",
" max_concurrent_runs=4)"
]
},
@@ -441,8 +441,7 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# pipeline_run.wait_for_completion()"
"pipeline_run.wait_for_completion()"
]
},
{
@@ -459,9 +458,8 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# metrics_output = pipeline_run.get_pipeline_output(metrics_output_name)\n",
"# num_file_downloaded = metrics_output.download('.', show_progress=True)"
"metrics_output = pipeline_run.get_pipeline_output(metrics_output_name)\n",
"num_file_downloaded = metrics_output.download('.', show_progress=True)"
]
},
{
@@ -470,15 +468,14 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# import pandas as pd\n",
"# import json\n",
"# with open(metrics_output._path_on_datastore) as f: \n",
"# metrics_output_result = f.read()\n",
"import pandas as pd\n",
"import json\n",
"with open(metrics_output._path_on_datastore) as f: \n",
" metrics_output_result = f.read()\n",
" \n",
"# deserialized_metrics_output = json.loads(metrics_output_result)\n",
"# df = pd.DataFrame(deserialized_metrics_output)\n",
"# df"
"deserialized_metrics_output = json.loads(metrics_output_result)\n",
"df = pd.DataFrame(deserialized_metrics_output)\n",
"df"
]
},
{
@@ -495,10 +492,9 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# hd_step_run = HyperDriveStepRun(step_run=pipeline_run.find_step_run(hd_step_name)[0])\n",
"# best_run = hd_step_run.get_best_run_by_primary_metric()\n",
"# best_run"
"hd_step_run = HyperDriveStepRun(step_run=pipeline_run.find_step_run(hd_step_name)[0])\n",
"best_run = hd_step_run.get_best_run_by_primary_metric()\n",
"best_run"
]
},
{
@@ -514,8 +510,7 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# print(best_run.get_file_names())"
"print(best_run.get_file_names())"
]
},
{
@@ -531,8 +526,7 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# model = best_run.register_model(model_name='tf-dnn-mnist', model_path='outputs/model')"
"model = best_run.register_model(model_name='tf-dnn-mnist', model_path='outputs/model')"
]
},
{
@@ -596,15 +590,14 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# from azureml.core.runconfig import CondaDependencies\n",
"from azureml.core.runconfig import CondaDependencies\n",
"\n",
"# cd = CondaDependencies.create()\n",
"# cd.add_conda_package('numpy')\n",
"# cd.add_tensorflow_conda_package()\n",
"# cd.save_to_file(base_directory='./', conda_file_path='myenv.yml')\n",
"cd = CondaDependencies.create()\n",
"cd.add_conda_package('numpy')\n",
"cd.add_tensorflow_conda_package()\n",
"cd.save_to_file(base_directory='./', conda_file_path='myenv.yml')\n",
"\n",
"# print(cd.serialize_to_string())"
"print(cd.serialize_to_string())"
]
},
{
@@ -621,13 +614,12 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# from azureml.core.webservice import AciWebservice\n",
"from azureml.core.webservice import AciWebservice\n",
"\n",
"# aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
"# memory_gb=1, \n",
"# tags={'name':'mnist', 'framework': 'TensorFlow DNN'},\n",
"# description='Tensorflow DNN on MNIST')"
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
" memory_gb=1, \n",
" tags={'name':'mnist', 'framework': 'TensorFlow DNN'},\n",
" description='Tensorflow DNN on MNIST')"
]
},
{
@@ -652,12 +644,11 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# from azureml.core.image import ContainerImage\n",
"from azureml.core.image import ContainerImage\n",
"\n",
"# imgconfig = ContainerImage.image_configuration(execution_script=\"score.py\", \n",
"# runtime=\"python\", \n",
"# conda_file=\"myenv.yml\")"
"imgconfig = ContainerImage.image_configuration(execution_script=\"score.py\", \n",
" runtime=\"python\", \n",
" conda_file=\"myenv.yml\")"
]
},
{
@@ -666,17 +657,16 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# %%time\n",
"# from azureml.core.webservice import Webservice\n",
"%%time\n",
"from azureml.core.webservice import Webservice\n",
"\n",
"# service = Webservice.deploy_from_model(workspace=ws,\n",
"# name='tf-mnist-svc',\n",
"# deployment_config=aciconfig,\n",
"# models=[model],\n",
"# image_config=imgconfig)\n",
"service = Webservice.deploy_from_model(workspace=ws,\n",
" name='tf-mnist-svc',\n",
" deployment_config=aciconfig,\n",
" models=[model],\n",
" image_config=imgconfig)\n",
"\n",
"# service.wait_for_deployment(show_output=True)"
"service.wait_for_deployment(show_output=True)"
]
},
{
@@ -692,8 +682,7 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# print(service.get_logs())"
"print(service.get_logs())"
]
},
{
@@ -709,8 +698,7 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# print(service.scoring_uri)"
"print(service.scoring_uri)"
]
},
{
@@ -729,37 +717,36 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# import json\n",
"import json\n",
"\n",
"# # find 30 random samples from test set\n",
"# n = 30\n",
"# sample_indices = np.random.permutation(X_test.shape[0])[0:n]\n",
"# find 30 random samples from test set\n",
"n = 30\n",
"sample_indices = np.random.permutation(X_test.shape[0])[0:n]\n",
"\n",
"# test_samples = json.dumps({\"data\": X_test[sample_indices].tolist()})\n",
"# test_samples = bytes(test_samples, encoding='utf8')\n",
"test_samples = json.dumps({\"data\": X_test[sample_indices].tolist()})\n",
"test_samples = bytes(test_samples, encoding='utf8')\n",
"\n",
"# # predict using the deployed model\n",
"# result = service.run(input_data=test_samples)\n",
"# predict using the deployed model\n",
"result = service.run(input_data=test_samples)\n",
"\n",
"# # compare actual value vs. the predicted values:\n",
"# i = 0\n",
"# plt.figure(figsize = (20, 1))\n",
"# compare actual value vs. the predicted values:\n",
"i = 0\n",
"plt.figure(figsize = (20, 1))\n",
"\n",
"# for s in sample_indices:\n",
"# plt.subplot(1, n, i + 1)\n",
"# plt.axhline('')\n",
"# plt.axvline('')\n",
"for s in sample_indices:\n",
" plt.subplot(1, n, i + 1)\n",
" plt.axhline('')\n",
" plt.axvline('')\n",
" \n",
"# # use different color for misclassified sample\n",
"# font_color = 'red' if y_test[s] != result[i] else 'black'\n",
"# clr_map = plt.cm.gray if y_test[s] != result[i] else plt.cm.Greys\n",
" # use different color for misclassified sample\n",
" font_color = 'red' if y_test[s] != result[i] else 'black'\n",
" clr_map = plt.cm.gray if y_test[s] != result[i] else plt.cm.Greys\n",
" \n",
"# plt.text(x=10, y=-10, s=y_hat[s], fontsize=18, color=font_color)\n",
"# plt.imshow(X_test[s].reshape(28, 28), cmap=clr_map)\n",
" plt.text(x=10, y=-10, s=y_hat[s], fontsize=18, color=font_color)\n",
" plt.imshow(X_test[s].reshape(28, 28), cmap=clr_map)\n",
" \n",
"# i = i + 1\n",
"# plt.show()"
" i = i + 1\n",
"plt.show()"
]
},
{
@@ -775,21 +762,20 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# import requests\n",
"import requests\n",
"\n",
"# # send a random row from the test set to score\n",
"# random_index = np.random.randint(0, len(X_test)-1)\n",
"# input_data = \"{\\\"data\\\": [\" + str(list(X_test[random_index])) + \"]}\"\n",
"# send a random row from the test set to score\n",
"random_index = np.random.randint(0, len(X_test)-1)\n",
"input_data = \"{\\\"data\\\": [\" + str(list(X_test[random_index])) + \"]}\"\n",
"\n",
"# headers = {'Content-Type':'application/json'}\n",
"headers = {'Content-Type':'application/json'}\n",
"\n",
"# resp = requests.post(service.scoring_uri, input_data, headers=headers)\n",
"resp = requests.post(service.scoring_uri, input_data, headers=headers)\n",
"\n",
"# print(\"POST to url\", service.scoring_uri)\n",
"# print(\"input data:\", input_data)\n",
"# print(\"label:\", y_test[random_index])\n",
"# print(\"prediction:\", resp.text)"
"print(\"POST to url\", service.scoring_uri)\n",
"print(\"input data:\", input_data)\n",
"print(\"label:\", y_test[random_index])\n",
"print(\"prediction:\", resp.text)"
]
},
{
@@ -808,18 +794,17 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# models = ws.models\n",
"# for name, model in models.items():\n",
"# print(\"Model: {}, ID: {}\".format(name, model.id))\n",
"models = ws.models\n",
"for name, model in models.items():\n",
" print(\"Model: {}, ID: {}\".format(name, model.id))\n",
" \n",
"# images = ws.images\n",
"# for name, image in images.items():\n",
"# print(\"Image: {}, location: {}\".format(name, image.image_location))\n",
"images = ws.images\n",
"for name, image in images.items():\n",
" print(\"Image: {}, location: {}\".format(name, image.image_location))\n",
" \n",
"# webservices = ws.webservices\n",
"# for name, webservice in webservices.items():\n",
"# print(\"Webservice: {}, scoring URI: {}\".format(name, webservice.scoring_uri))"
"webservices = ws.webservices\n",
"for name, webservice in webservices.items():\n",
" print(\"Webservice: {}, scoring URI: {}\".format(name, webservice.scoring_uri))"
]
},
{
@@ -836,15 +821,14 @@
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# service.delete()"
"service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "sonnyp"
"name": "sanpil"
}
],
"kernelspec": {

View File

@@ -0,0 +1,8 @@
name: aml-pipelines-parameter-tuning-with-hyperdrive
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- matplotlib
- numpy
- pandas_ml

View File

@@ -0,0 +1,5 @@
name: aml-pipelines-setup-schedule-for-a-published-pipeline
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -21,10 +21,10 @@
"source": [
"\n",
"# How to Setup a PipelineEndpoint and Submit a Pipeline Using the PipelineEndpoint.\n",
"In this notebook, we will see how to setup a PipelineEndpoint and run specific pipeline version.\n",
"In this notebook, we will see how to setup a PipelineEndpoint and run a specific pipeline version.\n",
"\n",
"PipelineEndpoint can be used to update a published pipeline while maintaining same endpoint.\n",
"PipelineEndpoint, provides a way to keep track of [PublishedPipelines](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.publishedpipeline) using versions. PipelineEndpoint uses endpoint with version information to trigger underlying published pipeline. Pipeline endpoints are uniquely named within a workspace. \n"
"PipelineEndpoint can be used to update a published pipeline while maintaining the same endpoint.\n",
"PipelineEndpoint provides a way to keep track of [PublishedPipelines](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.publishedpipeline) using versions. PipelineEndpoint uses endpoint with version information to trigger an underlying published pipeline. Pipeline endpoints are uniquely named within a workspace. \n"
]
},
{
@@ -433,7 +433,7 @@
"metadata": {},
"outputs": [],
"source": [
"pipeline_endpoint_by_name = PipelineEndpoint.get(workspace=ws, name=\"PipelineEndpointTest\")\n",
"pipeline_endpoint_by_name = PipelineEndpoint.get(workspace=ws, name=\"NewName\")\n",
"\n",
"# endpoint with id \n",
"rest_endpoint_id = pipeline_endpoint_by_name.endpoint\n",
@@ -515,11 +515,11 @@
"outputs": [],
"source": [
"# submit pipeline with specific version\n",
"run_id = pipeline_endpoint_by_name.submit(\"TestPipelineEndpoint\", pipeline_version=\"0\")\n",
"run_id = pipeline_endpoint_by_name.submit(\"NewName\", pipeline_version=\"0\")\n",
"print(run_id)\n",
"\n",
"# submit pipeline with default version\n",
"run_id = pipeline_endpoint_by_name.submit(\"TestPipelineEndpoint\")\n",
"run_id = pipeline_endpoint_by_name.submit(\"NewName\")\n",
"print(run_id)"
]
}

View File

@@ -0,0 +1,6 @@
name: aml-pipelines-setup-versioned-pipeline-endpoints
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- requests

View File

@@ -0,0 +1,479 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-data-dependency-steps.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Showcasing DataPath and PipelineParameter\n",
"\n",
"This notebook demonstrateas the use of [**DataPath**](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.datapath.datapath?view=azure-ml-py) and [**PipelineParameters**](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelineparameter?view=azure-ml-py) in AML Pipeline. You will learn how strings and [**DataPath**](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.datapath.datapath?view=azure-ml-py) can be parameterized and submitted to AML Pipelines via [**PipelineParameters**](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelineparameter?view=azure-ml-py).\n",
"To see more about how parameters work between steps, please refer [aml-pipelines-with-data-dependency-steps](https://aka.ms/pl-data-dep).\n",
"\n",
"* [How to create a Pipeline with a DataPath PipelineParameter](#index1)\n",
"* [How to submit a Pipeline with a DataPath PipelineParameter](#index2)\n",
"* [How to submit a Pipeline and change the DataPath PipelineParameter value from the sdk](#index3)\n",
"* [How to submit a Pipeline and change the DataPath PipelineParameter value using a REST call](#index4)\n",
"* [How to create a datastore trigger schedule and use the data_path_parameter_name to get the path of the changed blob in the Pipeline](#index5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Azure Machine Learning and Pipeline SDK-specific imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.data.datapath import DataPath, DataPathComputeBinding\n",
"from azureml.widgets import RunDetails\n",
"\n",
"from azureml.pipeline.core import PipelineParameter\n",
"from azureml.pipeline.core import Pipeline, PipelineRun\n",
"from azureml.pipeline.steps import PythonScriptStep\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration. If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure the config file is present at .\\config.json\n",
"\n",
"If you don't have a config.json file, please go through the configuration Notebook first.\n",
"\n",
"This sets you up with a working config file that has information on your workspace, subscription id, etc."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create an Azure ML experiment\n",
"\n",
"Let's create an experiment named \"automl-classification\" and a folder to hold the training scripts. The script runs will be recorded under the experiment in Azure."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'showcasing-datapath'\n",
"source_directory = '.'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"experiment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach an AmlCompute cluster\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"cpu-cluster\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 4)\n",
"\n",
" # Create the cluster.\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, timeout_in_minutes = 10)\n",
" \n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data and arguments setup \n",
"\n",
"We will setup a trining script to run and its arguments to be used. The sample training script below will print the two arguments to show what has been passed to pipeline."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile train_with_datapath.py\n",
"import argparse\n",
"import os\n",
"\n",
"parser = argparse.ArgumentParser(\"train\")\n",
"parser.add_argument(\"--arg1\", type=str, help=\"sample string argument\")\n",
"parser.add_argument(\"--arg2\", type=str, help=\"sample datapath argument\")\n",
"args = parser.parse_args()\n",
"\n",
"print(\"Sample string argument : %s\" % args.arg1)\n",
"print(\"Sample datapath argument: %s\" % args.arg2)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's setup string and DataPath arguments using PipelineParameter. \n",
"\n",
"Note that Pipeline accepts a tuple of the form ([**PipelineParameters**](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelineparameter?view=azure-ml-py) , [**DataPathComputeBinding**](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.datapath.datapathcomputebinding?view=azure-ml-py)) as an input. DataPath defines the location of input data. DataPathComputeBinding defines how the data is consumed during step execution. The DataPath can be modified at pipeline submission time with a DataPath parameter, while the compute binding does not change. For static data inputs, we use [**DataReference**](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.data_reference.datareference?view=azure-ml-py) which defines both the data location and compute binding."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def_blob_store = ws.get_default_datastore()\n",
"print(\"Default datastore's name: {}\".format(def_blob_store.name))\n",
"\n",
"data_path = DataPath(datastore=def_blob_store, path_on_datastore='sample_datapath1')\n",
"datapath1_pipeline_param = PipelineParameter(name=\"input_datapath\", default_value=data_path)\n",
"datapath_input = (datapath1_pipeline_param, DataPathComputeBinding(mode='mount'))\n",
"\n",
"string_pipeline_param = PipelineParameter(name=\"input_string\", default_value='sample_string1')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='index1'></a>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Pipeline with a DataPath PipelineParameter\n",
"\n",
"Note that the ```datapath_input``` is specified on both arguments and inputs to create a step."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_step = PythonScriptStep(\n",
" name='train_step',\n",
" script_name=\"train_with_datapath.py\",\n",
" arguments=[\"--arg1\", string_pipeline_param, \"--arg2\", datapath_input],\n",
" inputs=[datapath_input],\n",
" compute_target=compute_target, \n",
" source_directory=source_directory)\n",
"print(\"train_step created\")\n",
"\n",
"pipeline = Pipeline(workspace=ws, steps=[train_step])\n",
"print(\"pipeline with the train_step created\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='index2'></a>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Submit a Pipeline with a DataPath PipelineParameter\n",
"\n",
"Pipelines can be submitted with default values of PipelineParameters by not specifying any parameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pipeline_run = experiment.submit(pipeline)\n",
"print(\"Pipeline is submitted for execution\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='index3'></a>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Submit a Pipeline and change the DataPath PipelineParameter value from the sdk\n",
"\n",
"Or Pipelines can be submitted with values other than default ones by using pipeline_parameters. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pipeline_run_with_params = experiment.submit(pipeline, \\\n",
" pipeline_parameters={'input_datapath': DataPath(datastore=def_blob_store, path_on_datastore='sample_datapath2'),\n",
" 'input_string': 'sample_string2'}) "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"RunDetails(pipeline_run_with_params).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pipeline_run_with_params.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='index4'></a>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Submit a Pipeline and change the DataPath PipelineParameter value using a REST call\n",
"\n",
"Let's published the pipeline to use the rest endpoint of the published pipeline."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"published_pipeline = pipeline.publish(name=\"DataPath_Pipeline\", description=\"Pipeline to test Datapath\", continue_on_step_failure=True)\n",
"published_pipeline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
"import requests\n",
"\n",
"auth = InteractiveLoginAuthentication()\n",
"aad_token = auth.get_authentication_header()\n",
"\n",
"rest_endpoint = published_pipeline.endpoint\n",
"\n",
"print(\"You can perform HTTP POST on URL {} to trigger this pipeline\".format(rest_endpoint))\n",
"\n",
"# specify the param when running the pipeline\n",
"response = requests.post(rest_endpoint, \n",
" headers=aad_token, \n",
" json={\"ExperimentName\": \"MyRestPipeline\",\n",
" \"RunSource\": \"SDK\",\n",
" \"DataPathAssignments\": {\n",
" \"input_datapath\": { \n",
" \"DataStoreName\": def_blob_store.name,\n",
" \"RelativePath\": 'sample_datapath3'\n",
" }\n",
" },\n",
" \"ParameterAssignments\": {\"input_string\": \"sample_string3\"}\n",
" }\n",
" )\n",
"\n",
"run_id = response.json()[\"Id\"]\n",
"print('Submitted pipeline run: ', run_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"published_pipeline_run_via_rest = PipelineRun(ws.experiments[\"MyRestPipeline\"], run_id)\n",
"RunDetails(published_pipeline_run_via_rest).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"published_pipeline_run_via_rest.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id='index5'></a>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Datastore trigger schedule and use data path parameter\n",
"\n",
"When the Pipeline is scheduled with DataPath parameter, it will be triggered by the modified or added data in the DataPath. ```path_on_datastore``` should be a folder and the value of the DataPath will be replaced by the path of the modified data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import Schedule\n",
"\n",
"schedule = Schedule.create(workspace=ws, \n",
" name=\"Datastore_trigger_schedule\",\n",
" pipeline_id=published_pipeline.id, \n",
" experiment_name='Scheduled_Pipeline',\n",
" datastore=def_blob_store,\n",
" wait_for_provisioning=True,\n",
" description=\"Datastore trigger schedule demo\",\n",
" path_on_datastore=\"sample_datapath_for_folder\",\n",
" data_path_parameter_name=\"input_datapath\") #Same name as used above to create PipelineParameter\n",
"\n",
"print(\"Created schedule with id: {}\".format(schedule.id))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"schedule.disable()\n",
"schedule"
]
}
],
"metadata": {
"authors": [
{
"name": "sanpil"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,5 @@
name: aml-pipelines-showcasing-datapath-and-pipelineparameter
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -20,7 +20,7 @@
"metadata": {},
"source": [
"# Azure Machine Learning Pipelines with Data Dependency\n",
"In this notebook, we will see how we can build a pipeline with implicit data dependancy."
"In this notebook, we will see how we can build a pipeline with implicit data dependency."
]
},
{

View File

@@ -248,7 +248,7 @@
"# Specify CondaDependencies obj, add necessary packages\n",
"aml_run_config.environment.python.conda_dependencies = CondaDependencies.create(\n",
" conda_packages=['pandas','scikit-learn'], \n",
" pip_packages=['azureml-sdk', 'azureml-dataprep', 'azureml-train-automl==1.0.33'], \n",
" pip_packages=['azureml-sdk', 'azureml-dataprep', 'azureml-train-automl'], \n",
" pin_sdk_version=False)\n",
"\n",
"print (\"Run configuration created.\")"

View File

@@ -0,0 +1,139 @@
import argparse
import os
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
from chainer.dataset import concat_examples
from chainer.backends.cuda import to_cpu
from azureml.core.run import Run
run = Run.get_context()
class MyNetwork(Chain):
def __init__(self, n_mid_units=100, n_out=10):
super(MyNetwork, self).__init__()
with self.init_scope():
self.l1 = L.Linear(None, n_mid_units)
self.l2 = L.Linear(n_mid_units, n_mid_units)
self.l3 = L.Linear(n_mid_units, n_out)
def forward(self, x):
h = F.relu(self.l1(x))
h = F.relu(self.l2(h))
return self.l3(h)
def main():
parser = argparse.ArgumentParser(description='Chainer example: MNIST')
parser.add_argument('--batchsize', '-b', type=int, default=100,
help='Number of images in each mini-batch')
parser.add_argument('--epochs', '-e', type=int, default=20,
help='Number of sweeps over the dataset to train')
parser.add_argument('--output_dir', '-o', default='./outputs',
help='Directory to output the result')
parser.add_argument('--gpu_id', '-g', default=0,
help='ID of the GPU to be used. Set to -1 if you use CPU')
args = parser.parse_args()
# Download the MNIST data if you haven't downloaded it yet
train, test = datasets.mnist.get_mnist(withlabel=True, ndim=1)
gpu_id = args.gpu_id
batchsize = args.batchsize
epochs = args.epochs
run.log('Batch size', np.int(batchsize))
run.log('Epochs', np.int(epochs))
train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize,
repeat=False, shuffle=False)
model = MyNetwork()
if gpu_id >= 0:
# Make a specified GPU current
chainer.backends.cuda.get_device_from_id(0).use()
model.to_gpu() # Copy the model to the GPU
# Choose an optimizer algorithm
optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9)
# Give the optimizer a reference to the model so that it
# can locate the model's parameters.
optimizer.setup(model)
while train_iter.epoch < epochs:
# ---------- One iteration of the training loop ----------
train_batch = train_iter.next()
image_train, target_train = concat_examples(train_batch, gpu_id)
# Calculate the prediction of the network
prediction_train = model(image_train)
# Calculate the loss with softmax_cross_entropy
loss = F.softmax_cross_entropy(prediction_train, target_train)
# Calculate the gradients in the network
model.cleargrads()
loss.backward()
# Update all the trainable parameters
optimizer.update()
# --------------------- until here ---------------------
# Check the validation accuracy of prediction after every epoch
if train_iter.is_new_epoch: # If this iteration is the final iteration of the current epoch
# Display the training loss
print('epoch:{:02d} train_loss:{:.04f} '.format(
train_iter.epoch, float(to_cpu(loss.array))), end='')
test_losses = []
test_accuracies = []
while True:
test_batch = test_iter.next()
image_test, target_test = concat_examples(test_batch, gpu_id)
# Forward the test data
prediction_test = model(image_test)
# Calculate the loss
loss_test = F.softmax_cross_entropy(prediction_test, target_test)
test_losses.append(to_cpu(loss_test.array))
# Calculate the accuracy
accuracy = F.accuracy(prediction_test, target_test)
accuracy.to_cpu()
test_accuracies.append(accuracy.array)
if test_iter.is_new_epoch:
test_iter.epoch = 0
test_iter.current_position = 0
test_iter.is_new_epoch = False
test_iter._pushed_position = None
break
val_accuracy = np.mean(test_accuracies)
print('val_loss:{:.04f} val_accuracy:{:.04f}'.format(
np.mean(test_losses), val_accuracy))
run.log("Accuracy", np.float(val_accuracy))
serializers.save_npz(os.path.join(args.output_dir, 'model.npz'), model)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,45 @@
import numpy as np
import os
import json
from chainer import serializers, using_config, Variable, datasets
import chainer.functions as F
import chainer.links as L
from chainer import Chain
from azureml.core.model import Model
class MyNetwork(Chain):
def __init__(self, n_mid_units=100, n_out=10):
super(MyNetwork, self).__init__()
with self.init_scope():
self.l1 = L.Linear(None, n_mid_units)
self.l2 = L.Linear(n_mid_units, n_mid_units)
self.l3 = L.Linear(n_mid_units, n_out)
def forward(self, x):
h = F.relu(self.l1(x))
h = F.relu(self.l2(h))
return self.l3(h)
def init():
global model
model_root = Model.get_model_path('chainer-dnn-mnist')
# Load our saved artifacts
model = MyNetwork()
serializers.load_npz(model_root, model)
def run(input_data):
i = np.array(json.loads(input_data)['data'])
_, test = datasets.get_mnist()
x = Variable(np.asarray([test[i][0]]))
y = model(x)
return np.ndarray.tolist(y.data.argmax(axis=1))

View File

@@ -0,0 +1,725 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/ml-frameworks/chainer/deployment/train-hyperparameter-tune-deploy-with-chainer/train-hyperparameter-tune-deploy-with-chainer.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train and hyperparameter tune with Chainer\n",
"\n",
"In this tutorial, we demonstrate how to use the Azure ML Python SDK to train a Convolutional Neural Network (CNN) on a single-node GPU with Chainer to perform handwritten digit recognition on the popular MNIST dataset. We will also demonstrate how to perform hyperparameter tuning of the model using Azure ML's HyperDrive service."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"* If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [Configuration](../../../configuration.ipynb) notebook to install the Azure Machine Learning Python SDK and create an Azure ML `Workspace`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!jupyter nbextension install --py --user azureml.widgets\n",
"!jupyter nbextension enable --py --user azureml.widgets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"Diagnostics"
]
},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace, this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# choose a name for your cluster\n",
"cluster_name = \"gpu-cluster\"\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target.')\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', \n",
" min_nodes=2,\n",
" max_nodes=4)\n",
"\n",
" # create the cluster\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"\n",
" compute_target.wait_for_completion(show_output=True)\n",
"\n",
"# use get_status() to get a detailed status for the current cluster. \n",
"print(compute_target.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code creates a GPU cluster. If you instead want to create a CPU cluster, provide a different VM size to the `vm_size` parameter, such as `STANDARD_D2_V2`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train model on the remote compute\n",
"Now that you have your data and training script prepared, you are ready to train on your remote compute cluster. You can take advantage of Azure compute to leverage GPUs to cut down your training time. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a project directory\n",
"Create a directory that will contain all the necessary code from your local machine that you will need access to on the remote resource. This includes the training script and any additional files your training script depends on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"project_folder = './chainer-mnist'\n",
"os.makedirs(project_folder, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare training script\n",
"Now you will need to create your training script. In this tutorial, the training script is already provided for you at `chainer_mnist.py`. In practice, you should be able to take any custom training script as is and run it with Azure ML without having to modify your code.\n",
"\n",
"However, if you would like to use Azure ML's [tracking and metrics](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#metrics) capabilities, you will have to add a small amount of Azure ML code inside your training script. \n",
"\n",
"In `chainer_mnist.py`, we will log some metrics to our Azure ML run. To do so, we will access the Azure ML `Run` object within the script:\n",
"```Python\n",
"from azureml.core.run import Run\n",
"run = Run.get_context()\n",
"```\n",
"Further within `chainer_mnist.py`, we log the batchsize and epochs parameters, and the highest accuracy the model achieves:\n",
"```Python\n",
"run.log('Batch size', np.int(args.batchsize))\n",
"run.log('Epochs', np.int(args.epochs))\n",
"\n",
"run.log('Accuracy', np.float(val_accuracy))\n",
"```\n",
"These run metrics will become particularly important when we begin hyperparameter tuning our model in the \"Tune model hyperparameters\" section."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once your script is ready, copy the training script `chainer_mnist.py` into your project directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import shutil\n",
"\n",
"shutil.copy('chainer_mnist.py', project_folder)\n",
"shutil.copy('chainer_score.py', project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create an experiment\n",
"Create an [Experiment](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#experiment) to track all the runs in your workspace for this Chainer tutorial. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"experiment_name = 'chainer-mnist'\n",
"experiment = Experiment(ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Chainer estimator\n",
"The Azure ML SDK's Chainer estimator enables you to easily submit Chainer training jobs for both single-node and distributed runs. The following code will define a single-node Chainer job."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"dnn-chainer-remarks-sample"
]
},
"outputs": [],
"source": [
"from azureml.train.dnn import Chainer\n",
"\n",
"script_params = {\n",
" '--epochs': 10,\n",
" '--batchsize': 128,\n",
" '--output_dir': './outputs'\n",
"}\n",
"\n",
"estimator = Chainer(source_directory=project_folder, \n",
" script_params=script_params,\n",
" compute_target=compute_target,\n",
" pip_packages=['numpy', 'pytest'],\n",
" entry_script='chainer_mnist.py',\n",
" use_gpu=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `script_params` parameter is a dictionary containing the command-line arguments to your training script `entry_script`. To leverage the Azure VM's GPU for training, we set `use_gpu=True`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit job\n",
"Run your experiment by submitting your estimator object. Note that this call is asynchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run = experiment.submit(estimator)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor your run\n",
"You can monitor the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# to get more details of your run\n",
"print(run.get_details())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tune model hyperparameters\n",
"Now that we've seen how to do a simple Chainer training run using the SDK, let's see if we can further improve the accuracy of our model. We can optimize our model's hyperparameters using Azure Machine Learning's hyperparameter tuning capabilities."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Start a hyperparameter sweep\n",
"First, we will define the hyperparameter space to sweep over. Let's tune the batch size and epochs parameters. In this example we will use random sampling to try different configuration sets of hyperparameters to maximize our primary metric, accuracy.\n",
"\n",
"Then, we specify the early termination policy to use to early terminate poorly performing runs. Here we use the `BanditPolicy`, which will terminate any run that doesn't fall within the slack factor of our primary evaluation metric. In this tutorial, we will apply this policy every epoch (since we report our `Accuracy` metric every epoch and `evaluation_interval=1`). Notice we will delay the first policy evaluation until after the first `3` epochs (`delay_evaluation=3`).\n",
"Refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-tune-hyperparameters#specify-an-early-termination-policy) for more information on the BanditPolicy and other policies available."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.hyperdrive.runconfig import HyperDriveConfig\n",
"from azureml.train.hyperdrive.sampling import RandomParameterSampling\n",
"from azureml.train.hyperdrive.policy import BanditPolicy\n",
"from azureml.train.hyperdrive.run import PrimaryMetricGoal\n",
"from azureml.train.hyperdrive.parameter_expressions import choice\n",
" \n",
"\n",
"param_sampling = RandomParameterSampling( {\n",
" \"--batchsize\": choice(128, 256),\n",
" \"--epochs\": choice(5, 10, 20, 40)\n",
" }\n",
")\n",
"\n",
"hyperdrive_config = HyperDriveConfig(estimator=estimator,\n",
" hyperparameter_sampling=param_sampling, \n",
" primary_metric_name='Accuracy',\n",
" policy=BanditPolicy(evaluation_interval=1, slack_factor=0.1, delay_evaluation=3),\n",
" primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,\n",
" max_total_runs=8,\n",
" max_concurrent_runs=4)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, lauch the hyperparameter tuning job."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# start the HyperDrive run\n",
"hyperdrive_run = experiment.submit(hyperdrive_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor HyperDrive runs\n",
"You can monitor the progress of the runs with the following Jupyter widget. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"RunDetails(hyperdrive_run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hyperdrive_run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Find and register best model\n",
"When all jobs finish, we can find out the one that has the highest accuracy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run = hyperdrive_run.get_best_run_by_primary_metric()\n",
"print(best_run.get_details()['runDefinition']['arguments'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, let's list the model files uploaded during the run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(best_run.get_file_names())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can then register the folder (and all files in it) as a model named `chainer-dnn-mnist` under the workspace for deployment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = best_run.register_model(model_name='chainer-dnn-mnist', model_path='outputs/model.npz')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy the model in ACI\n",
"Now, we are ready to deploy the model as a web service running in Azure Container Instance, [ACI](https://azure.microsoft.com/en-us/services/container-instances/). Azure Machine Learning accomplishes this by constructing a Docker image with the scoring logic and model baked in.\n",
"\n",
"### Create scoring script\n",
"First, we will create a scoring script that will be invoked by the web service call.\n",
"+ Now that the scoring script must have two required functions, `init()` and `run(input_data)`.\n",
" + In `init()`, you typically load the model into a global object. This function is executed only once when the Docker contianer is started.\n",
" + In `run(input_data)`, the model is used to predict a value based on the input data. The input and output to `run` uses NPZ as the serialization and de-serialization format because it is the preferred format for Chainer, but you are not limited to it.\n",
" \n",
"Refer to the scoring script `chainer_score.py` for this tutorial. Our web service will use this file to predict. When writing your own scoring script, don't forget to test it locally first before you go and deploy the web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"shutil.copy('chainer_score.py', project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create myenv.yml\n",
"We also need to create an environment file so that Azure Machine Learning can install the necessary packages in the Docker image which are required by your scoring script. In this case, we need to specify conda packages `numpy` and `chainer`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import CondaDependencies\n",
"\n",
"cd = CondaDependencies.create()\n",
"cd.add_conda_package('numpy')\n",
"cd.add_conda_package('chainer')\n",
"cd.save_to_file(base_directory='./', conda_file_path='myenv.yml')\n",
"\n",
"print(cd.serialize_to_string())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy to ACI\n",
"We are almost ready to deploy. Create the inference configuration and deployment configuration and deploy to ACI. This cell will run for about 7-8 minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.webservice import Webservice\n",
"from azureml.core.model import Model\n",
"\n",
"inference_config = InferenceConfig(runtime= \"python\", \n",
" entry_script=\"chainer_score.py\",\n",
" conda_file=\"myenv.yml\")\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1,\n",
" auth_enabled=True, # this flag generates API keys to secure access\n",
" memory_gb=1,\n",
" tags={'name': 'mnist', 'framework': 'Chainer'},\n",
" description='Chainer DNN with MNIST')\n",
"\n",
"service = Model.deploy(workspace=ws, \n",
" name='chainer-mnist-1', \n",
" models=[model], \n",
" inference_config=inference_config, \n",
" deployment_config=aciconfig)\n",
"service.wait_for_deployment(True)\n",
"print(service.state)\n",
"print(service.scoring_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Tip: If something goes wrong with the deployment, the first thing to look at is the logs from the service by running the following command:** `print(service.get_logs())`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is the scoring web service endpoint: `print(service.scoring_uri)`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the deployed model\n",
"Let's test the deployed model. Pick a random sample from the test set, and send it to the web service hosted in ACI for a prediction. Note, here we are using the an HTTP request to invoke the service.\n",
"\n",
"We can retrieve the API keys used for accessing the HTTP endpoint and construct a raw HTTP request to send to the service. Don't forget to add key to the HTTP header."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# retreive the API keys. two keys were generated.\n",
"key1, Key2 = service.get_keys()\n",
"print(key1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import urllib\n",
"import gzip\n",
"import numpy as np\n",
"import struct\n",
"import requests\n",
"\n",
"\n",
"# load compressed MNIST gz files and return numpy arrays\n",
"def load_data(filename, label=False):\n",
" with gzip.open(filename) as gz:\n",
" struct.unpack('I', gz.read(4))\n",
" n_items = struct.unpack('>I', gz.read(4))\n",
" if not label:\n",
" n_rows = struct.unpack('>I', gz.read(4))[0]\n",
" n_cols = struct.unpack('>I', gz.read(4))[0]\n",
" res = np.frombuffer(gz.read(n_items[0] * n_rows * n_cols), dtype=np.uint8)\n",
" res = res.reshape(n_items[0], n_rows * n_cols)\n",
" else:\n",
" res = np.frombuffer(gz.read(n_items[0]), dtype=np.uint8)\n",
" res = res.reshape(n_items[0], 1)\n",
" return res\n",
"\n",
"os.makedirs('./data/mnist', exist_ok=True)\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', filename = './data/mnist/test-images.gz')\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', filename = './data/mnist/test-labels.gz')\n",
"\n",
"X_test = load_data('./data/mnist/test-images.gz', False)\n",
"y_test = load_data('./data/mnist/test-labels.gz', True).reshape(-1)\n",
"\n",
"\n",
"# send a random row from the test set to score\n",
"random_index = np.random.randint(0, len(X_test)-1)\n",
"input_data = \"{\\\"data\\\": [\" + str(random_index) + \"]}\"\n",
"\n",
"headers = {'Content-Type':'application/json', 'Authorization': 'Bearer ' + key1}\n",
"\n",
"# send sample to service for scoring\n",
"resp = requests.post(service.scoring_uri, input_data, headers=headers)\n",
"\n",
"print(\"label:\", y_test[random_index])\n",
"print(\"prediction:\", resp.text[1])\n",
"\n",
"plt.imshow(X_test[random_index].reshape((28,28)), cmap='gray')\n",
"plt.axis('off')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's look at the workspace after the web service was deployed. You should see\n",
"\n",
" + a registered model named 'chainer-dnn-mnist' and with the id 'chainer-dnn-mnist:1'\n",
" + a webservice called 'chainer-mnist-svc' with some scoring URL"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"models = ws.models\n",
"for name, model in models.items():\n",
" print(\"Model: {}, ID: {}\".format(name, model.id))\n",
" \n",
"webservices = ws.webservices\n",
"for name, webservice in webservices.items():\n",
" print(\"Webservice: {}, scoring URI: {}\".format(name, webservice.scoring_uri))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Clean up"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can delete the ACI deployment with a simple delete API call."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "dipeck"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"msauthor": "dipeck"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,12 @@
name: train-hyperparameter-tune-deploy-with-chainer
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- numpy
- matplotlib
- json
- urllib
- gzip
- struct
- requests

View File

@@ -0,0 +1,320 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/ml-frameworks/chainer/training/distributed-chainer/distributed-chainer.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Distributed Chainer\n",
"In this tutorial, you will run a Chainer training example on the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset using ChainerMN distributed training across a GPU cluster."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"* If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [Configuration](../../../configuration.ipynb) notebook to install the Azure Machine Learning Python SDK and create an Azure ML `Workspace`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"Diagnostics"
]
},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"\n",
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource. Specifically, the below code creates an `STANDARD_NC6` GPU cluster that autoscales from `0` to `4` nodes.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace, this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# choose a name for your cluster\n",
"cluster_name = \"gpu-cluster\"\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target.')\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6',\n",
" max_nodes=4)\n",
"\n",
" # create the cluster\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"\n",
" compute_target.wait_for_completion(show_output=True)\n",
"\n",
"# use get_status() to get a detailed status for the current AmlCompute. \n",
"print(compute_target.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code creates GPU compute. If you instead want to create CPU compute, provide a different VM size to the `vm_size` parameter, such as `STANDARD_D2_V2`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train model on the remote compute\n",
"Now that we have the AmlCompute ready to go, let's run our distributed training job."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a project directory\n",
"Create a directory that will contain all the necessary code from your local machine that you will need access to on the remote resource. This includes the training script and any additional files your training script depends on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"project_folder = './chainer-distr'\n",
"os.makedirs(project_folder, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare training script\n",
"Now you will need to create your training script. In this tutorial, the script for distributed training of MNIST is already provided for you at `train_mnist.py`. In practice, you should be able to take any custom Chainer training script as is and run it with Azure ML without having to modify your code."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once your script is ready, copy the training script `train_mnist.py` into the project directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import shutil\n",
"\n",
"shutil.copy('train_mnist.py', project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create an experiment\n",
"Create an [Experiment](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#experiment) to track all the runs in your workspace for this distributed Chainer tutorial. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"experiment_name = 'chainer-distr'\n",
"experiment = Experiment(ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Chainer estimator\n",
"The Azure ML SDK's Chainer estimator enables you to easily submit Chainer training jobs for both single-node and distributed runs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.dnn import Chainer, Mpi\n",
"\n",
"estimator = Chainer(source_directory=project_folder,\n",
" compute_target=compute_target,\n",
" entry_script='train_mnist.py',\n",
" node_count=2,\n",
" distributed_training=Mpi(),\n",
" use_gpu=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code specifies that we will run our training script on `2` nodes, with one worker per node. In order to execute a distributed run using MPI, you must provide the argument `distributed_backend=Mpi()`. To specify `i` workers per node, you must provide the argument `distributed_backend=Mpi(process_count_per_node=i)`.Using this estimator with these settings, Chainer and its dependencies will be installed for you. However, if your script also uses other packages, make sure to install them via the `Chainer` constructor's `pip_packages` or `conda_packages` parameters."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit job\n",
"Run your experiment by submitting your estimator object. Note that this call is asynchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run = experiment.submit(estimator)\n",
"print(run)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor your run\n",
"You can monitor the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes. You can see that the widget automatically plots and visualizes the loss metric that we logged to the Azure ML run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.wait_for_completion(show_output=True)"
]
}
],
"metadata": {
"authors": [
{
"name": "ninhu"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,5 @@
name: distributed-chainer
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -0,0 +1,125 @@
# Official ChainerMN example taken from
# https://github.com/chainer/chainer/blob/master/examples/chainermn/mnist/train_mnist.py
from __future__ import print_function
import argparse
import chainer
import chainer.functions as F
import chainer.links as L
from chainer import training
from chainer.training import extensions
import chainermn
class MLP(chainer.Chain):
def __init__(self, n_units, n_out):
super(MLP, self).__init__(
# the size of the inputs to each layer will be inferred
l1=L.Linear(784, n_units), # n_in -> n_units
l2=L.Linear(n_units, n_units), # n_units -> n_units
l3=L.Linear(n_units, n_out), # n_units -> n_out
)
def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)
def main():
parser = argparse.ArgumentParser(description='ChainerMN example: MNIST')
parser.add_argument('--batchsize', '-b', type=int, default=100,
help='Number of images in each mini-batch')
parser.add_argument('--communicator', type=str,
default='non_cuda_aware', help='Type of communicator')
parser.add_argument('--epoch', '-e', type=int, default=20,
help='Number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', default=True,
help='Use GPU')
parser.add_argument('--out', '-o', default='result',
help='Directory to output the result')
parser.add_argument('--resume', '-r', default='',
help='Resume the training from snapshot')
parser.add_argument('--unit', '-u', type=int, default=1000,
help='Number of units')
args = parser.parse_args()
# Prepare ChainerMN communicator.
if args.gpu:
if args.communicator == 'naive':
print("Error: 'naive' communicator does not support GPU.\n")
exit(-1)
comm = chainermn.create_communicator(args.communicator)
device = comm.intra_rank
else:
if args.communicator != 'naive':
print('Warning: using naive communicator '
'because only naive supports CPU-only execution')
comm = chainermn.create_communicator('naive')
device = -1
if comm.rank == 0:
print('==========================================')
print('Num process (COMM_WORLD): {}'.format(comm.size))
if args.gpu:
print('Using GPUs')
print('Using {} communicator'.format(args.communicator))
print('Num unit: {}'.format(args.unit))
print('Num Minibatch-size: {}'.format(args.batchsize))
print('Num epoch: {}'.format(args.epoch))
print('==========================================')
model = L.Classifier(MLP(args.unit, 10))
if device >= 0:
chainer.cuda.get_device_from_id(device).use()
model.to_gpu()
# Create a multi node optimizer from a standard Chainer optimizer.
optimizer = chainermn.create_multi_node_optimizer(
chainer.optimizers.Adam(), comm)
optimizer.setup(model)
# Split and distribute the dataset. Only worker 0 loads the whole dataset.
# Datasets of worker 0 are evenly split and distributed to all workers.
if comm.rank == 0:
train, test = chainer.datasets.get_mnist()
else:
train, test = None, None
train = chainermn.scatter_dataset(train, comm, shuffle=True)
test = chainermn.scatter_dataset(test, comm, shuffle=True)
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
test_iter = chainer.iterators.SerialIterator(test, args.batchsize,
repeat=False, shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer, device=device)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
# Create a multi node evaluator from a standard Chainer evaluator.
evaluator = extensions.Evaluator(test_iter, model, device=device)
evaluator = chainermn.create_multi_node_evaluator(evaluator, comm)
trainer.extend(evaluator)
# Some display and output extensions are necessary only for one worker.
# (Otherwise, there would just be repeated outputs.)
if comm.rank == 0:
trainer.extend(extensions.dump_graph('main/loss'))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
trainer.extend(extensions.ProgressBar())
if args.resume:
chainer.serializers.load_npz(args.resume, trainer)
trainer.run()
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,31 @@
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license.
import torch
import torch.nn as nn
from torchvision import transforms
import json
from azureml.core.model import Model
def init():
global model
model_path = Model.get_model_path('pytorch-birds')
model = torch.load(model_path, map_location=lambda storage, loc: storage)
model.eval()
def run(input_data):
input_data = torch.tensor(json.loads(input_data)['data'])
# get prediction
with torch.no_grad():
output = model(input_data)
classes = ['chicken', 'turkey']
softmax = nn.Softmax(dim=1)
pred_probs = softmax(output).numpy()[0]
index = torch.argmax(output, 1)
result = {"label": classes[index], "probability": str(pred_probs[index])}
return result

View File

@@ -0,0 +1,206 @@
# Copyright (c) 2017, PyTorch contributors
# Modifications copyright (C) Microsoft Corporation
# Licensed under the BSD license
# Adapted from https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torchvision import datasets, models, transforms
import numpy as np
import time
import os
import copy
import argparse
from azureml.core.run import Run
# get the Azure ML run object
run = Run.get_context()
def load_data(data_dir):
"""Load the train/val data."""
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
return dataloaders, dataset_sizes, class_names
def train_model(model, criterion, optimizer, scheduler, num_epochs, data_dir):
"""Train the model."""
# load training/validation data
dataloaders, dataset_sizes, class_names = load_data(data_dir)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
# log the best val accuracy to AML run
run.log('best_val_acc', np.float(best_acc))
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
def fine_tune_model(num_epochs, data_dir, learning_rate, momentum):
"""Load a pretrained model and reset the final fully connected layer."""
# log the hyperparameter metrics to the AML run
run.log('lr', np.float(learning_rate))
run.log('momentum', np.float(momentum))
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2) # only 2 classes to predict
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(),
lr=learning_rate, momentum=momentum)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(
optimizer_ft, step_size=7, gamma=0.1)
model = train_model(model_ft, criterion, optimizer_ft,
exp_lr_scheduler, num_epochs, data_dir)
return model
def download_data():
"""Download and extract the training data."""
import urllib
from zipfile import ZipFile
# download data
data_file = './fowl_data.zip'
download_url = 'https://msdocsdatasets.blob.core.windows.net/pytorchfowl/fowl_data.zip'
urllib.request.urlretrieve(download_url, filename=data_file)
# extract files
with ZipFile(data_file, 'r') as zip:
print('extracting files...')
zip.extractall()
print('finished extracting')
data_dir = zip.namelist()[0]
# delete zip file
os.remove(data_file)
return data_dir
def main():
print("Torch version:", torch.__version__)
# get command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--num_epochs', type=int, default=25,
help='number of epochs to train')
parser.add_argument('--output_dir', type=str, help='output directory')
parser.add_argument('--learning_rate', type=float,
default=0.001, help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
args = parser.parse_args()
data_dir = download_data()
print("data directory is: " + data_dir)
model = fine_tune_model(args.num_epochs, data_dir,
args.learning_rate, args.momentum)
os.makedirs(args.output_dir, exist_ok=True)
torch.save(model, os.path.join(args.output_dir, 'model.pt'))
if __name__ == "__main__":
main()

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 MiB

View File

@@ -0,0 +1,715 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/ml-frameworks/pytorch/deployment/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train, hyperparameter tune, and deploy with PyTorch\n",
"\n",
"In this tutorial, you will train, hyperparameter tune, and deploy a PyTorch model using the Azure Machine Learning (Azure ML) Python SDK.\n",
"\n",
"This tutorial will train an image classification model using transfer learning, based on PyTorch's [Transfer Learning tutorial](https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html). The model is trained to classify chickens and turkeys by first using a pretrained ResNet18 model that has been trained on the [ImageNet](http://image-net.org/index) dataset."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"* If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [Configuration](../../../configuration.ipynb) notebook to install the Azure Machine Learning Python SDK and create an Azure ML `Workspace`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"Diagnostics"
]
},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace, this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# choose a name for your cluster\n",
"cluster_name = \"gpu-cluster\"\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target.')\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', \n",
" max_nodes=4)\n",
"\n",
" # create the cluster\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"\n",
" compute_target.wait_for_completion(show_output=True)\n",
"\n",
"# use get_status() to get a detailed status for the current cluster. \n",
"print(compute_target.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code creates a GPU cluster. If you instead want to create a CPU cluster, provide a different VM size to the `vm_size` parameter, such as `STANDARD_D2_V2`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train model on the remote compute\n",
"Now that you have your data and training script prepared, you are ready to train on your remote compute cluster. You can take advantage of Azure compute to leverage GPUs to cut down your training time. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a project directory\n",
"Create a directory that will contain all the necessary code from your local machine that you will need access to on the remote resource. This includes the training script and any additional files your training script depends on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"project_folder = './pytorch-birds'\n",
"os.makedirs(project_folder, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download training data\n",
"The dataset we will use (located on a public blob [here](https://msdocsdatasets.blob.core.windows.net/pytorchfowl/fowl_data.zip) as a zip file) consists of about 120 training images each for turkeys and chickens, with 100 validation images for each class. The images are a subset of the [Open Images v5 Dataset](https://storage.googleapis.com/openimages/web/index.html). We will download and extract the dataset as part of our training script `pytorch_train.py`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare training script\n",
"Now you will need to create your training script. In this tutorial, the training script is already provided for you at `pytorch_train.py`. In practice, you should be able to take any custom training script as is and run it with Azure ML without having to modify your code.\n",
"\n",
"However, if you would like to use Azure ML's [tracking and metrics](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#metrics) capabilities, you will have to add a small amount of Azure ML code inside your training script. \n",
"\n",
"In `pytorch_train.py`, we will log some metrics to our Azure ML run. To do so, we will access the Azure ML `Run` object within the script:\n",
"```Python\n",
"from azureml.core.run import Run\n",
"run = Run.get_context()\n",
"```\n",
"Further within `pytorch_train.py`, we log the learning rate and momentum parameters, and the best validation accuracy the model achieves:\n",
"```Python\n",
"run.log('lr', np.float(learning_rate))\n",
"run.log('momentum', np.float(momentum))\n",
"\n",
"run.log('best_val_acc', np.float(best_acc))\n",
"```\n",
"These run metrics will become particularly important when we begin hyperparameter tuning our model in the \"Tune model hyperparameters\" section."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once your script is ready, copy the training script `pytorch_train.py` into your project directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import shutil\n",
"\n",
"shutil.copy('pytorch_train.py', project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create an experiment\n",
"Create an [Experiment](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#experiment) to track all the runs in your workspace for this transfer learning PyTorch tutorial. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"experiment_name = 'pytorch-birds'\n",
"experiment = Experiment(ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a PyTorch estimator\n",
"The Azure ML SDK's PyTorch estimator enables you to easily submit PyTorch training jobs for both single-node and distributed runs. For more information on the PyTorch estimator, refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-pytorch). The following code will define a single-node PyTorch job."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"dnn-pytorch-remarks-sample"
]
},
"outputs": [],
"source": [
"from azureml.train.dnn import PyTorch\n",
"\n",
"script_params = {\n",
" '--num_epochs': 30,\n",
" '--output_dir': './outputs'\n",
"}\n",
"\n",
"estimator = PyTorch(source_directory=project_folder, \n",
" script_params=script_params,\n",
" compute_target=compute_target,\n",
" entry_script='pytorch_train.py',\n",
" use_gpu=True,\n",
" pip_packages=['pillow==5.4.1'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `script_params` parameter is a dictionary containing the command-line arguments to your training script `entry_script`. Please note the following:\n",
"- We passed our training data reference `ds_data` to our script's `--data_dir` argument. This will 1) mount our datastore on the remote compute and 2) provide the path to the training data `fowl_data` on our datastore.\n",
"- We specified the output directory as `./outputs`. The `outputs` directory is specially treated by Azure ML in that all the content in this directory gets uploaded to your workspace as part of your run history. The files written to this directory are therefore accessible even once your remote run is over. In this tutorial, we will save our trained model to this output directory.\n",
"\n",
"To leverage the Azure VM's GPU for training, we set `use_gpu=True`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit job\n",
"Run your experiment by submitting your estimator object. Note that this call is asynchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run = experiment.submit(estimator)\n",
"print(run)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# to get more details of your run\n",
"print(run.get_details())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor your run\n",
"You can monitor the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively, you can block until the script has completed training before running more code."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tune model hyperparameters\n",
"Now that we've seen how to do a simple PyTorch training run using the SDK, let's see if we can further improve the accuracy of our model. We can optimize our model's hyperparameters using Azure Machine Learning's hyperparameter tuning capabilities."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Start a hyperparameter sweep\n",
"First, we will define the hyperparameter space to sweep over. Since our training script uses a learning rate schedule to decay the learning rate every several epochs, let's tune the initial learning rate and the momentum parameters. In this example we will use random sampling to try different configuration sets of hyperparameters to maximize our primary metric, the best validation accuracy (`best_val_acc`).\n",
"\n",
"Then, we specify the early termination policy to use to early terminate poorly performing runs. Here we use the `BanditPolicy`, which will terminate any run that doesn't fall within the slack factor of our primary evaluation metric. In this tutorial, we will apply this policy every epoch (since we report our `best_val_acc` metric every epoch and `evaluation_interval=1`). Notice we will delay the first policy evaluation until after the first `10` epochs (`delay_evaluation=10`).\n",
"Refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-tune-hyperparameters#specify-an-early-termination-policy) for more information on the BanditPolicy and other policies available."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.hyperdrive import RandomParameterSampling, BanditPolicy, HyperDriveConfig, uniform, PrimaryMetricGoal\n",
"\n",
"param_sampling = RandomParameterSampling( {\n",
" 'learning_rate': uniform(0.0005, 0.005),\n",
" 'momentum': uniform(0.9, 0.99)\n",
" }\n",
")\n",
"\n",
"early_termination_policy = BanditPolicy(slack_factor=0.15, evaluation_interval=1, delay_evaluation=10)\n",
"\n",
"hyperdrive_config = HyperDriveConfig(estimator=estimator,\n",
" hyperparameter_sampling=param_sampling, \n",
" policy=early_termination_policy,\n",
" primary_metric_name='best_val_acc',\n",
" primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,\n",
" max_total_runs=8,\n",
" max_concurrent_runs=4)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, lauch the hyperparameter tuning job."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# start the HyperDrive run\n",
"hyperdrive_run = experiment.submit(hyperdrive_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor HyperDrive runs\n",
"You can monitor the progress of the runs with the following Jupyter widget. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"RunDetails(hyperdrive_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Or block until the HyperDrive sweep has completed:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hyperdrive_run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Find and register the best model\n",
"Once all the runs complete, we can find the run that produced the model with the highest accuracy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run = hyperdrive_run.get_best_run_by_primary_metric()\n",
"best_run_metrics = best_run.get_metrics()\n",
"print(best_run)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('Best Run is:\\n Validation accuracy: {0:.5f} \\n Learning rate: {1:.5f} \\n Momentum: {2:.5f}'.format(\n",
" best_run_metrics['best_val_acc'][-1],\n",
" best_run_metrics['lr'],\n",
" best_run_metrics['momentum'])\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, register the model from your best-performing run to your workspace. The `model_path` parameter takes in the relative path on the remote VM to the model file in your `outputs` directory. In the next section, we will deploy this registered model as a web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = best_run.register_model(model_name = 'pytorch-birds', model_path = 'outputs/model.pt')\n",
"print(model.name, model.id, model.version, sep = '\\t')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy model as web service\n",
"Once you have your trained model, you can deploy the model on Azure. In this tutorial, we will deploy the model as a web service in [Azure Container Instances](https://docs.microsoft.com/en-us/azure/container-instances/) (ACI). For more information on deploying models using Azure ML, refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-deploy-and-where)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create scoring script\n",
"\n",
"First, we will create a scoring script that will be invoked by the web service call. Note that the scoring script must have two required functions:\n",
"* `init()`: In this function, you typically load the model into a `global` object. This function is executed only once when the Docker container is started. \n",
"* `run(input_data)`: In this function, the model is used to predict a value based on the input data. The input and output typically use JSON as serialization and deserialization format, but you are not limited to that.\n",
"\n",
"Refer to the scoring script `pytorch_score.py` for this tutorial. Our web service will use this file to predict whether an image is a chicken or a turkey. When writing your own scoring script, don't forget to test it locally first before you go and deploy the web service."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create environment file\n",
"Then, we will need to create an environment file (`myenv.yml`) that specifies all of the scoring script's package dependencies. This file is used to ensure that all of those dependencies are installed in the Docker image by Azure ML. In this case, we need to specify `azureml-core`, `torch` and `torchvision`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"myenv = CondaDependencies.create(pip_packages=['azureml-defaults', 'torch', 'torchvision'])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())\n",
" \n",
"print(myenv.serialize_to_string())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy to ACI container\n",
"We are ready to deploy. Create an inference configuration which gives specifies the inferencing environment and scripts. Create a deployment configuration file to specify the number of CPUs and gigabytes of RAM needed for your ACI container. While it depends on your model, the default of `1` core and `1` gigabyte of RAM is usually sufficient for many models. This cell will run for about 7-8 minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.webservice import Webservice\n",
"from azureml.core.model import Model\n",
"\n",
"inference_config = InferenceConfig(runtime= \"python\", \n",
" entry_script=\"pytorch_score.py\",\n",
" conda_file=\"myenv.yml\")\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
" memory_gb=1, \n",
" tags={'data': 'birds', 'method':'transfer learning', 'framework':'pytorch'},\n",
" description='Classify turkey/chickens using transfer learning with PyTorch')\n",
"\n",
"service = Model.deploy(workspace=ws, \n",
" name='aci-birds', \n",
" models=[model], \n",
" inference_config=inference_config, \n",
" deployment_config=aciconfig)\n",
"service.wait_for_deployment(True)\n",
"print(service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If your deployment fails for any reason and you need to redeploy, make sure to delete the service before you do so: `service.delete()`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Tip: If something goes wrong with the deployment, the first thing to look at is the logs from the service by running the following command:**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"service.get_logs()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Get the web service's HTTP endpoint, which accepts REST client calls. This endpoint can be shared with anyone who wants to test the web service or integrate it into an application."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(service.scoring_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the web service\n",
"Finally, let's test our deployed web service. We will send the data as a JSON string to the web service hosted in ACI and use the SDK's `run` API to invoke the service. Here we will take an image from our validation data to predict on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"from PIL import Image\n",
"import matplotlib.pyplot as plt\n",
"\n",
"%matplotlib inline\n",
"plt.imshow(Image.open('test_img.jpg'))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from torchvision import transforms\n",
" \n",
"def preprocess(image_file):\n",
" \"\"\"Preprocess the input image.\"\"\"\n",
" data_transforms = transforms.Compose([\n",
" transforms.Resize(256),\n",
" transforms.CenterCrop(224),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n",
" ])\n",
"\n",
" image = Image.open(image_file)\n",
" image = data_transforms(image).float()\n",
" image = torch.tensor(image)\n",
" image = image.unsqueeze(0)\n",
" return image.numpy()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"input_data = preprocess('test_img.jpg')\n",
"result = service.run(input_data=json.dumps({'data': input_data.tolist()}))\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Clean up\n",
"Once you no longer need the web service, you can delete it with a simple API call."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "ninhu"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,9 @@
name: train-hyperparameter-tune-deploy-with-pytorch
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- pillow==5.4.1
- matplotlib
- https://download.pytorch.org/whl/cpu/torch-1.1.0-cp35-cp35m-win_amd64.whl
- https://download.pytorch.org/whl/cpu/torchvision-0.3.0-cp35-cp35m-win_amd64.whl

View File

@@ -0,0 +1,340 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/ml-frameworks/pytorch/training/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Distributed PyTorch with Horovod\n",
"In this tutorial, you will train a PyTorch model on the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset using distributed training via [Horovod](https://github.com/uber/horovod) across a GPU cluster."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"* If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [Configuration](../../../configuration.ipynb) notebook to install the Azure Machine Learning Python SDK and create an Azure ML `Workspace`\n",
"* Review the [tutorial](../train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) on single-node PyTorch training using Azure Machine Learning"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"Diagnostics"
]
},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"\n",
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource. Specifically, the below code creates an `STANDARD_NC6` GPU cluster that autoscales from `0` to `4` nodes.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace, this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# choose a name for your cluster\n",
"cluster_name = \"gpu-cluster\"\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target.')\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6',\n",
" max_nodes=4)\n",
"\n",
" # create the cluster\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"\n",
" compute_target.wait_for_completion(show_output=True)\n",
"\n",
"# use get_status() to get a detailed status for the current AmlCompute. \n",
"print(compute_target.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code creates GPU compute. If you instead want to create CPU compute, provide a different VM size to the `vm_size` parameter, such as `STANDARD_D2_V2`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train model on the remote compute\n",
"Now that we have the AmlCompute ready to go, let's run our distributed training job."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a project directory\n",
"Create a directory that will contain all the necessary code from your local machine that you will need access to on the remote resource. This includes the training script and any additional files your training script depends on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"project_folder = './pytorch-distr-hvd'\n",
"os.makedirs(project_folder, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare training script\n",
"Now you will need to create your training script. In this tutorial, the script for distributed training of MNIST is already provided for you at `pytorch_horovod_mnist.py`. In practice, you should be able to take any custom PyTorch training script as is and run it with Azure ML without having to modify your code.\n",
"\n",
"However, if you would like to use Azure ML's [metric logging](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#logging) capabilities, you will have to add a small amount of Azure ML logic inside your training script. In this example, at each logging interval, we will log the loss for that minibatch to our Azure ML run.\n",
"\n",
"To do so, in `pytorch_horovod_mnist.py`, we will first access the Azure ML `Run` object within the script:\n",
"```Python\n",
"from azureml.core.run import Run\n",
"run = Run.get_context()\n",
"```\n",
"Later within the script, we log the loss metric to our run:\n",
"```Python\n",
"run.log('loss', loss.item())\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once your script is ready, copy the training script `pytorch_horovod_mnist.py` into the project directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import shutil\n",
"\n",
"shutil.copy('pytorch_horovod_mnist.py', project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create an experiment\n",
"Create an [Experiment](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#experiment) to track all the runs in your workspace for this distributed PyTorch tutorial. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"experiment_name = 'pytorch-distr-hvd'\n",
"experiment = Experiment(ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a PyTorch estimator\n",
"The Azure ML SDK's PyTorch estimator enables you to easily submit PyTorch training jobs for both single-node and distributed runs. For more information on the PyTorch estimator, refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-pytorch)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.dnn import PyTorch, Mpi\n",
"\n",
"estimator = PyTorch(source_directory=project_folder,\n",
" compute_target=compute_target,\n",
" entry_script='pytorch_horovod_mnist.py',\n",
" node_count=2,\n",
" distributed_training=Mpi(),\n",
" use_gpu=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code specifies that we will run our training script on `2` nodes, with one worker per node. In order to execute a distributed run using MPI/Horovod, you must provide the argument `distributed_backend=Mpi()`. To specify `i` workers per node, you must provide the argument `distributed_backend=Mpi(process_count_per_node=i)`. Using this estimator with these settings, PyTorch, Horovod and their dependencies will be installed for you. However, if your script also uses other packages, make sure to install them via the `PyTorch` constructor's `pip_packages` or `conda_packages` parameters."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit job\n",
"Run your experiment by submitting your estimator object. Note that this call is asynchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run = experiment.submit(estimator)\n",
"print(run)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor your run\n",
"You can monitor the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes. You can see that the widget automatically plots and visualizes the loss metric that we logged to the Azure ML run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively, you can block until the script has completed training before running more code."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.wait_for_completion(show_output=True) # this provides a verbose log"
]
}
],
"metadata": {
"authors": [
{
"name": "ninhu"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,5 @@
name: distributed-pytorch-with-horovod
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -0,0 +1,170 @@
# Copyright (c) 2017, PyTorch contributors
# Modifications copyright (C) Microsoft Corporation
# Licensed under the BSD license
# Adapted from https://github.com/uber/horovod/blob/master/examples/pytorch_mnist.py
from __future__ import print_function
import argparse
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import torch.utils.data.distributed
import horovod.torch as hvd
from azureml.core.run import Run
# get the Azure ML run object
run = Run.get_context()
print("Torch version:", torch.__version__)
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=42, metavar='S',
help='random seed (default: 42)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
help='use fp16 compression during allreduce')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
hvd.init()
torch.manual_seed(args.seed)
if args.cuda:
# Horovod: pin GPU to local rank.
torch.cuda.set_device(hvd.local_rank())
torch.cuda.manual_seed(args.seed)
kwargs = {}
train_dataset = \
datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
test_dataset = \
datasets.MNIST('data-%d' % hvd.rank(), train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
test_sampler = torch.utils.data.distributed.DistributedSampler(
test_dataset, num_replicas=hvd.size(), rank=hvd.rank())
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size,
sampler=test_sampler, **kwargs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
model = Net()
if args.cuda:
# Move model to GPU.
model.cuda()
# Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
# Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),
momentum=args.momentum)
# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(optimizer,
named_parameters=model.named_parameters(),
compression=compression)
def train(epoch):
model.train()
train_sampler.set_epoch(epoch)
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_sampler),
100. * batch_idx / len(train_loader), loss.item()))
# log the loss to the Azure ML run
run.log('loss', loss.item())
def metric_average(val, name):
tensor = torch.tensor(val)
avg_tensor = hvd.allreduce(tensor, name=name)
return avg_tensor.item()
def test():
model.eval()
test_loss = 0.
test_accuracy = 0.
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, size_average=False).item()
# get the index of the max log-probability
pred = output.data.max(1, keepdim=True)[1]
test_accuracy += pred.eq(target.data.view_as(pred)).cpu().float().sum()
test_loss /= len(test_sampler)
test_accuracy /= len(test_sampler)
test_loss = metric_average(test_loss, 'avg_loss')
test_accuracy = metric_average(test_accuracy, 'avg_accuracy')
if hvd.rank() == 0:
print('\nTest set: Average loss: {:.4f}, Accuracy: {:.2f}%\n'.format(
test_loss, 100. * test_accuracy))
for epoch in range(1, args.epochs + 1):
train(epoch)
test()

View File

@@ -0,0 +1,382 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/training-with-deep-learning/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Distributed PyTorch \n",
"In this tutorial, you will train a PyTorch model on the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset using distributed training via Nccl/Gloo across a GPU cluster. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"* If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [Configuration](../../../configuration.ipynb) notebook to install the Azure Machine Learning Python SDK and create an Azure ML `Workspace`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"Diagnostics"
]
},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"\n",
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource. Specifically, the below code creates an `STANDARD_NC6` GPU cluster that autoscales from `0` to `4` nodes.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace, this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# choose a name for your cluster\n",
"cluster_name = \"gpu-cluster\"\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target.')\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6',\n",
" max_nodes=4)\n",
"\n",
" # create the cluster\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"\n",
" compute_target.wait_for_completion(show_output=True)\n",
"\n",
"# use get_status() to get a detailed status for the current AmlCompute. \n",
"print(compute_target.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code creates GPU compute. If you instead want to create CPU compute, provide a different VM size to the `vm_size` parameter, such as `STANDARD_D2_V2`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train model on the remote compute\n",
"Now that we have the AmlCompute ready to go, let's run our distributed training job."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a project directory\n",
"Create a directory that will contain all the necessary code from your local machine that you will need access to on the remote resource. This includes the training script and any additional files your training script depends on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"project_folder = './pytorch-distr'\n",
"os.makedirs(project_folder, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare training script\n",
"Now you will need to create your training script. In this tutorial, the script for distributed training of MNIST is already provided for you at `pytorch_mnist.py`. In practice, you should be able to take any custom PyTorch training script as is and run it with Azure ML without having to modify your code.\n",
"\n",
"However, if you would like to use Azure ML's [metric logging](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#logging) capabilities, you will have to add a small amount of Azure ML logic inside your training script. In this example, at each logging interval, we will log the loss for that minibatch to our Azure ML run.\n",
"\n",
"To do so, in `pytorch_mnist.py`, we will first access the Azure ML `Run` object within the script:\n",
"```Python\n",
"from azureml.core.run import Run\n",
"run = Run.get_context()\n",
"```\n",
"Later within the script, we log the loss metric to our run:\n",
"```Python\n",
"run.log('loss', losses.avg)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once your script is ready, copy the training script `pytorch_mnist.py` into the project directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import shutil\n",
"\n",
"shutil.copy('pytorch_mnist.py', project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create an experiment\n",
"Create an [Experiment](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#experiment) to track all the runs in your workspace for this distributed PyTorch tutorial. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"experiment_name = 'pytorch-distr'\n",
"experiment = Experiment(ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a PyTorch estimator(Nccl Backend)\n",
"The Azure ML SDK's PyTorch estimator enables you to easily submit PyTorch training jobs for both single-node and distributed runs. For more information on the PyTorch estimator, refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-pytorch)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.dnn import PyTorch, Nccl\n",
"\n",
"estimator = PyTorch(source_directory=project_folder,\n",
" script_params={\"--dist-backend\" : \"nccl\",\n",
" \"--dist-url\": \"$AZ_BATCHAI_PYTORCH_INIT_METHOD\",\n",
" \"--rank\": \"$AZ_BATCHAI_TASK_INDEX\",\n",
" \"--world-size\": 2},\n",
" compute_target=compute_target,\n",
" entry_script='pytorch_mnist.py',\n",
" node_count=2,\n",
" distributed_training=Nccl(),\n",
" use_gpu=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the above code, `script_params` uses Azure ML generated `AZ_BATCHAI_PYTORCH_INIT_METHOD` for shared file-system initialization and `AZ_BATCHAI_TASK_INDEX` as rank of each worker process.\n",
"The above code specifies that we will run our training script on `2` nodes, with one worker per node. In order to execute a distributed run using Nccl, you must provide the argument `distributed_training=Nccl()`. Using this estimator with these settings, PyTorch and dependencies will be installed for you. However, if your script also uses other packages, make sure to install them via the `PyTorch` constructor's `pip_packages` or `conda_packages` parameters."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit job\n",
"Run your experiment by submitting your estimator object. Note that this call is asynchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run = experiment.submit(estimator)\n",
"print(run)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor your run\n",
"You can monitor the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes. You can see that the widget automatically plots and visualizes the loss metric that we logged to the Azure ML run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively, you can block until the script has completed training before running more code."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.wait_for_completion(show_output=True) # this provides a verbose log"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a PyTorch estimator(Gloo Backend)\n",
"The Azure ML SDK's PyTorch estimator enables you to easily submit PyTorch training jobs for both single-node and distributed runs. For more information on the PyTorch estimator, refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-pytorch)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.dnn import PyTorch, Gloo\n",
"\n",
"estimator = PyTorch(source_directory=project_folder,\n",
" script_params={\"--dist-backend\" : \"gloo\",\n",
" \"--dist-url\": \"$AZ_BATCHAI_PYTORCH_INIT_METHOD\",\n",
" \"--rank\": \"$AZ_BATCHAI_TASK_INDEX\",\n",
" \"--world-size\": 2},\n",
" compute_target=compute_target,\n",
" entry_script='pytorch_mnist.py',\n",
" node_count=2,\n",
" distributed_training=Gloo(),\n",
" use_gpu=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the above code, `script_params` uses Azure ML generated `AZ_BATCHAI_PYTORCH_INIT_METHOD` for shared file-system initialization and `AZ_BATCHAI_TASK_INDEX` as rank of each worker process.\n",
"The above code specifies that we will run our training script on `2` nodes, with one worker per node. In order to execute a distributed run using Gloo, you must provide the argument `distributed_training=Gloo()`. Using this estimator with these settings, PyTorch and dependencies will be installed for you. However, if your script also uses other packages, make sure to install them via the `PyTorch` constructor's `pip_packages` or `conda_packages` parameters.\n",
"\n",
"Once you create the estimaotr you can follow the submit steps as shown above to submit a PyTorch run with `Gloo` backend. "
]
}
],
"metadata": {
"authors": [
{
"name": "ninhu"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,5 @@
name: distributed-pytorch-with-nccl-gloo
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -0,0 +1,209 @@
# Copyright (c) 2017, PyTorch contributors
# Modifications copyright (C) Microsoft Corporation
# Licensed under the BSD license
# Adapted from https://github.com/Azure/BatchAI/tree/master/recipes/PyTorch/PyTorch-GPU-Distributed-Gloo
from __future__ import print_function
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.utils.data
import torch.utils.data.distributed
import torchvision.models as models
from azureml.core.run import Run
# get the Azure ML run object
run = Run.get_context()
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--rank', default=-1, type=int,
help='rank of the worker')
best_prec1 = 0
args = parser.parse_args()
args.distributed = args.world_size >= 2
if args.distributed:
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
train_dataset = datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
test_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
model = Net()
if not args.distributed:
model = torch.nn.DataParallel(model).cuda()
else:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
def train(epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input, target = input.cuda(), target.cuda()
# compute output
try:
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 10 == 0:
run.log("loss", losses.avg)
run.log("prec@1", "{0:.3f}".format(top1.avg))
run.log("prec@5", "{0:.3f}".format(top5.avg))
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(epoch, i, len(train_loader),
batch_time=batch_time, data_time=data_time,
loss=losses, top1=top1, top5=top5))
except:
import sys
print("Unexpected error:", sys.exc_info()[0])
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
for epoch in range(1, args.epochs + 1):
train(epoch)

View File

@@ -0,0 +1,568 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/ml-frameworks/scikit-learn/training/train-hyperparameter-tune-deploy-with-sklearn/train-hyperparameter-tune-deploy-with-sklearn.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train and hyperparameter tune on Iris Dataset with Scikit-learn\n",
"In this tutorial, we demonstrate how to use the Azure ML Python SDK to train a support vector machine (SVM) on a single-node CPU with Scikit-learn to perform classification on the popular [Iris dataset](https://archive.ics.uci.edu/ml/datasets/iris). We will also demonstrate how to perform hyperparameter tuning of the model using Azure ML's HyperDrive service."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* Go through the [Configuration](../../../configuration.ipynb) notebook to install the Azure Machine Learning Python SDK and create an Azure ML Workspace"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create AmlCompute"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If we could not find the cluster with the given name, then we will create a new cluster here. We will create an `AmlCompute` cluster of `STANDARD_D2_V2` CPU VMs. This process is broken down into 3 steps:\n",
"1. create the configuration (this step is local and only takes a second)\n",
"2. create the cluster (this step will take about **20 seconds**)\n",
"3. provision the VMs to bring the cluster to the initial size (of 1 in this case). This step will take about **3-5 minutes** and is providing only sparse output in the process. Please make sure to wait until the call returns before moving to the next cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# choose a name for your cluster\n",
"cluster_name = \"cpu-cluster\"\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target')\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2', \n",
" max_nodes=4)\n",
"\n",
" # create the cluster\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"\n",
" # can poll for a minimum number of nodes and for a specific timeout. \n",
" # if no min node count is provided it uses the scale settings for the cluster\n",
" compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)\n",
"\n",
"# use get_status() to get a detailed status for the current cluster. \n",
"print(compute_target.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code retrieves a CPU compute target. Scikit-learn does not support GPU computing."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train model on the remote compute"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that you have your data and training script prepared, you are ready to train on your remote compute. You can take advantage of Azure compute to leverage a CPU cluster."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a project directory"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create a directory that will contain all the necessary code from your local machine that you will need access to on the remote resource. This includes the training script and any additional files your training script depends on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"project_folder = './sklearn-iris'\n",
"os.makedirs(project_folder, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare training script"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now you will need to create your training script. In this tutorial, the training script is already provided for you at `train_iris`.py. In practice, you should be able to take any custom training script as is and run it with Azure ML without having to modify your code.\n",
"\n",
"However, if you would like to use Azure ML's [tracking and metrics](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#metrics) capabilities, you will have to add a small amount of Azure ML code inside your training script.\n",
"\n",
"In `train_iris.py`, we will log some metrics to our Azure ML run. To do so, we will access the Azure ML Run object within the script:\n",
"\n",
"```python\n",
"from azureml.core.run import Run\n",
"run = Run.get_context()\n",
"```\n",
"\n",
"Further within `train_iris.py`, we log the kernel and penalty parameters, and the highest accuracy the model achieves:\n",
"\n",
"```python\n",
"run.log('Kernel type', np.string(args.kernel))\n",
"run.log('Penalty', np.float(args.penalty))\n",
"\n",
"run.log('Accuracy', np.float(accuracy))\n",
"```\n",
"\n",
"These run metrics will become particularly important when we begin hyperparameter tuning our model in the \"Tune model hyperparameters\" section.\n",
"\n",
"Once your script is ready, copy the training script `train_iris.py` into your project directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import shutil\n",
"\n",
"shutil.copy('train_iris.py', project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create an experiment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create an [Experiment](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#experiment) to track all the runs in your workspace for this Scikit-learn tutorial."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"experiment_name = 'train_iris'\n",
"experiment = Experiment(ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Scikit-learn estimator"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Azure ML SDK's Scikit-learn estimator enables you to easily submit Scikit-learn training jobs for single-node runs. The following code will define a single-node Scikit-learn job."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"sklearn-remarks-sample"
]
},
"outputs": [],
"source": [
"from azureml.train.sklearn import SKLearn\n",
"\n",
"script_params = {\n",
" '--kernel': 'linear',\n",
" '--penalty': 1.0,\n",
"}\n",
"\n",
"estimator = SKLearn(source_directory=project_folder, \n",
" script_params=script_params,\n",
" compute_target=compute_target,\n",
" entry_script='train_iris.py',\n",
" pip_packages=['joblib==0.13.2']\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `script_params` parameter is a dictionary containing the command-line arguments to your training script `entry_script`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit job"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run your experiment by submitting your estimator object. Note that this call is asynchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run = experiment.submit(estimator)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Monitor your run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can monitor the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.cancel()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tune model hyperparameters"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we've seen how to do a simple Scikit-learn training run using the SDK, let's see if we can further improve the accuracy of our model. We can optimize our model's hyperparameters using Azure Machine Learning's hyperparameter tuning capabilities."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Start a hyperparameter sweep"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we will define the hyperparameter space to sweep over. Let's tune the `kernel` and `penalty` parameters. In this example we will use random sampling to try different configuration sets of hyperparameters to maximize our primary metric, `Accuracy`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.hyperdrive.runconfig import HyperDriveRunConfig\n",
"from azureml.train.hyperdrive.sampling import RandomParameterSampling\n",
"from azureml.train.hyperdrive.run import PrimaryMetricGoal\n",
"from azureml.train.hyperdrive.parameter_expressions import choice\n",
" \n",
"\n",
"param_sampling = RandomParameterSampling( {\n",
" \"--kernel\": choice('linear', 'rbf', 'poly', 'sigmoid'),\n",
" \"--penalty\": choice(0.5, 1, 1.5)\n",
" }\n",
")\n",
"\n",
"hyperdrive_run_config = HyperDriveRunConfig(estimator=estimator,\n",
" hyperparameter_sampling=param_sampling, \n",
" primary_metric_name='Accuracy',\n",
" primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,\n",
" max_total_runs=12,\n",
" max_concurrent_runs=4)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, lauch the hyperparameter tuning job."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# start the HyperDrive run\n",
"hyperdrive_run = experiment.submit(hyperdrive_run_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Monitor HyperDrive runs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can monitor the progress of the runs with the following Jupyter widget."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"RunDetails(hyperdrive_run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hyperdrive_run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Find and register best model\n",
"When all jobs finish, we can find out the one that has the highest accuracy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run = hyperdrive_run.get_best_run_by_primary_metric()\n",
"print(best_run.get_details()['runDefinition']['arguments'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, let's list the model files uploaded during the run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(best_run.get_file_names())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can then register the folder (and all files in it) as a model named `sklearn-iris` under the workspace for deployment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = best_run.register_model(model_name='sklearn-iris', model_path='outputs/model.joblib')"
]
}
],
"metadata": {
"authors": [
{
"name": "dipeck"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"msauthor": "dipeck"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,6 @@
name: train-hyperparameter-tune-deploy-with-sklearn
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- numpy

View File

@@ -0,0 +1,60 @@
# Modified from https://www.geeksforgeeks.org/multiclass-classification-using-scikit-learn/
import argparse
import os
# importing necessary libraries
import numpy as np
from sklearn import datasets
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
import joblib
from azureml.core.run import Run
run = Run.get_context()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--kernel', type=str, default='linear',
help='Kernel type to be used in the algorithm')
parser.add_argument('--penalty', type=float, default=1.0,
help='Penalty parameter of the error term')
args = parser.parse_args()
run.log('Kernel type', np.str(args.kernel))
run.log('Penalty', np.float(args.penalty))
# loading the iris dataset
iris = datasets.load_iris()
# X -> features, y -> label
X = iris.data
y = iris.target
# dividing X, y into train and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# training a linear SVM classifier
from sklearn.svm import SVC
svm_model_linear = SVC(kernel=args.kernel, C=args.penalty).fit(X_train, y_train)
svm_predictions = svm_model_linear.predict(X_test)
# model accuracy for X_test
accuracy = svm_model_linear.score(X_test, y_test)
print('Accuracy of SVM classifier on test set: {:.2f}'.format(accuracy))
run.log('Accuracy', np.float(accuracy))
# creating a confusion matrix
cm = confusion_matrix(y_test, svm_predictions)
print(cm)
os.makedirs('outputs', exist_ok=True)
# files saved in the "outputs" folder are automatically uploaded into run history
joblib.dump(svm_model_linear, 'outputs/model.joblib')
if __name__ == '__main__':
main()

Binary file not shown.

After

Width:  |  Height:  |  Size: 119 KiB

View File

@@ -0,0 +1,106 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import numpy as np
import argparse
import os
import tensorflow as tf
from azureml.core import Run
from utils import load_data
print("TensorFlow version:", tf.VERSION)
parser = argparse.ArgumentParser()
parser.add_argument('--data-folder', type=str, dest='data_folder', help='data folder mounting point')
parser.add_argument('--batch-size', type=int, dest='batch_size', default=50, help='mini batch size for training')
parser.add_argument('--first-layer-neurons', type=int, dest='n_hidden_1', default=100,
help='# of neurons in the first layer')
parser.add_argument('--second-layer-neurons', type=int, dest='n_hidden_2', default=100,
help='# of neurons in the second layer')
parser.add_argument('--learning-rate', type=float, dest='learning_rate', default=0.01, help='learning rate')
args = parser.parse_args()
data_folder = os.path.join(args.data_folder, 'mnist')
print('training dataset is stored here:', data_folder)
X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0
X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0
y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)
y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep='\n')
training_set_size = X_train.shape[0]
n_inputs = 28 * 28
n_h1 = args.n_hidden_1
n_h2 = args.n_hidden_2
n_outputs = 10
learning_rate = args.learning_rate
n_epochs = 20
batch_size = args.batch_size
with tf.name_scope('network'):
# construct the DNN
X = tf.placeholder(tf.float32, shape=(None, n_inputs), name='X')
y = tf.placeholder(tf.int64, shape=(None), name='y')
h1 = tf.layers.dense(X, n_h1, activation=tf.nn.relu, name='h1')
h2 = tf.layers.dense(h1, n_h2, activation=tf.nn.relu, name='h2')
output = tf.layers.dense(h2, n_outputs, name='output')
with tf.name_scope('train'):
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=output)
loss = tf.reduce_mean(cross_entropy, name='loss')
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss)
with tf.name_scope('eval'):
correct = tf.nn.in_top_k(output, y, 1)
acc_op = tf.reduce_mean(tf.cast(correct, tf.float32))
init = tf.global_variables_initializer()
saver = tf.train.Saver()
# start an Azure ML run
run = Run.get_context()
with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
# randomly shuffle training set
indices = np.random.permutation(training_set_size)
X_train = X_train[indices]
y_train = y_train[indices]
# batch index
b_start = 0
b_end = b_start + batch_size
for _ in range(training_set_size // batch_size):
# get a batch
X_batch, y_batch = X_train[b_start: b_end], y_train[b_start: b_end]
# update batch index for the next batch
b_start = b_start + batch_size
b_end = min(b_start + batch_size, training_set_size)
# train
sess.run(train_op, feed_dict={X: X_batch, y: y_batch})
# evaluate training set
acc_train = acc_op.eval(feed_dict={X: X_batch, y: y_batch})
# evaluate validation set
acc_val = acc_op.eval(feed_dict={X: X_test, y: y_test})
# log accuracies
run.log('training_acc', np.float(acc_train))
run.log('validation_acc', np.float(acc_val))
print(epoch, '-- Training accuracy:', acc_train, '\b Validation accuracy:', acc_val)
y_hat = np.argmax(output.eval(feed_dict={X: X_test}), axis=1)
run.log('final_acc', np.float(acc_val))
os.makedirs('./outputs/model', exist_ok=True)
# files saved in the "./outputs" folder are automatically uploaded into run history
saver.save(sess, './outputs/model/mnist-tf.model')

View File

@@ -0,0 +1,8 @@
name: train-hyperparameter-tune-deploy-with-tensorflow
dependencies:
- numpy
- tensorflow
- matplotlib
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -0,0 +1,27 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import gzip
import numpy as np
import struct
# load compressed MNIST gz files and return numpy arrays
def load_data(filename, label=False):
with gzip.open(filename) as gz:
struct.unpack('I', gz.read(4))
n_items = struct.unpack('>I', gz.read(4))
if not label:
n_rows = struct.unpack('>I', gz.read(4))[0]
n_cols = struct.unpack('>I', gz.read(4))[0]
res = np.frombuffer(gz.read(n_items[0] * n_rows * n_cols), dtype=np.uint8)
res = res.reshape(n_items[0], n_rows * n_cols)
else:
res = np.frombuffer(gz.read(n_items[0]), dtype=np.uint8)
res = res.reshape(n_items[0], 1)
return res
# one-hot encode a 1-D array
def one_hot_encode(array, num_of_classes):
return np.eye(num_of_classes)[array.reshape(-1)]

View File

@@ -0,0 +1,409 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/training/manage-runs/manage-runs.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Distributed Tensorflow with Horovod\n",
"In this tutorial, you will train a word2vec model in TensorFlow using distributed training via [Horovod](https://github.com/uber/horovod)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning (AML)\n",
"* If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) to:\n",
" * install the AML SDK\n",
" * create a workspace and its configuration file (`config.json`)\n",
"* Review the [tutorial](../train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) on single-node TensorFlow training using the SDK"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"Diagnostics"
]
},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# choose a name for your cluster\n",
"cluster_name = \"gpu-cluster\"\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target')\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', \n",
" max_nodes=4)\n",
"\n",
" # create the cluster\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"\n",
" compute_target.wait_for_completion(show_output=True)\n",
"\n",
"# use get_status() to get a detailed status for the current cluster. \n",
"print(compute_target.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code creates a GPU cluster. If you instead want to create a CPU cluster, provide a different VM size to the `vm_size` parameter, such as `STANDARD_D2_V2`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Upload data to datastore\n",
"To make data accessible for remote training, AML provides a convenient way to do so via a [Datastore](https://docs.microsoft.com/azure/machine-learning/service/how-to-access-data). The datastore provides a mechanism for you to upload/download data to Azure Storage, and interact with it from your remote compute targets. \n",
"\n",
"If your data is already stored in Azure, or you download the data as part of your training script, you will not need to do this step. For this tutorial, although you can download the data in your training script, we will demonstrate how to upload the training data to a datastore and access it during training to illustrate the datastore functionality."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, download the training data from [here](http://mattmahoney.net/dc/text8.zip) to your local machine:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import urllib\n",
"\n",
"os.makedirs('./data', exist_ok=True)\n",
"download_url = 'http://mattmahoney.net/dc/text8.zip'\n",
"urllib.request.urlretrieve(download_url, filename='./data/text8.zip')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Each workspace is associated with a default datastore. In this tutorial, we will upload the training data to this default datastore."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ds = ws.get_default_datastore()\n",
"print(ds.datastore_type, ds.account_name, ds.container_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Upload the contents of the data directory to the path `./data` on the default datastore."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ds.upload(src_dir='data', target_path='data', overwrite=True, show_progress=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For convenience, let's get a reference to the path on the datastore with the zip file of training data. We can do so using the `path` method. In the next section, we can then pass this reference to our training script's `--input_data` argument. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"path_on_datastore = 'data/text8.zip'\n",
"ds_data = ds.path(path_on_datastore)\n",
"print(ds_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train model on the remote compute"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a project directory\n",
"Create a directory that will contain all the necessary code from your local machine that you will need access to on the remote resource. This includes the training script, and any additional files your training script depends on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"project_folder = './tf-distr-hvd'\n",
"os.makedirs(project_folder, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copy the training script `tf_horovod_word2vec.py` into this project directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import shutil\n",
"\n",
"shutil.copy('tf_horovod_word2vec.py', project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create an experiment\n",
"Create an [Experiment](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#experiment) to track all the runs in your workspace for this distributed TensorFlow tutorial. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"experiment_name = 'tf-distr-hvd'\n",
"experiment = Experiment(ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a TensorFlow estimator\n",
"The AML SDK's TensorFlow estimator enables you to easily submit TensorFlow training jobs for both single-node and distributed runs. For more information on the TensorFlow estimator, refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-tensorflow).\n",
"\n",
"The TensorFlow estimator also takes a `framework_version` parameter -- if no version is provided, the estimator will default to the latest version supported by AzureML. Use `TensorFlow.get_supported_versions()` to get a list of all versions supported by your current SDK version or see the [SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.dnn?view=azure-ml-py) for the versions supported in the most current release."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.dnn import TensorFlow, Mpi\n",
"\n",
"script_params={\n",
" '--input_data': ds_data\n",
"}\n",
"\n",
"estimator= TensorFlow(source_directory=project_folder,\n",
" compute_target=compute_target,\n",
" script_params=script_params,\n",
" entry_script='tf_horovod_word2vec.py',\n",
" node_count=2,\n",
" distributed_training=Mpi(),\n",
" framework_version='1.13')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code specifies that we will run our training script on `2` nodes, with one worker per node. In order to execute a distributed run using MPI/Horovod, you must provide the argument `distributed_backend=Mpi()`. To specify `i` workers per node, you must provide the argument `distributed_backend=Mpi(process_count_per_node=i)`. Using this estimator with these settings, TensorFlow, Horovod and their dependencies will be installed for you. However, if your script also uses other packages, make sure to install them via the `TensorFlow` constructor's `pip_packages` or `conda_packages` parameters.\n",
"\n",
"Note that we passed our training data reference `ds_data` to our script's `--input_data` argument. This will 1) mount our datastore on the remote compute and 2) provide the path to the data zip file on our datastore."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit job\n",
"Run your experiment by submitting your estimator object. Note that this call is asynchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run = experiment.submit(estimator)\n",
"print(run)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor your run\n",
"You can monitor the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively, you can block until the script has completed training before running more code."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.wait_for_completion(show_output=True)"
]
}
],
"metadata": {
"authors": [
{
"name": "roastala"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,5 @@
name: distributed-tensorflow-with-horovod
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -0,0 +1,259 @@
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
# Modifications copyright (C) 2017 Uber Technologies, Inc.
# Additional modifications copyright (C) Microsoft Corporation
# Licensed under the Apache License, Version 2.0
# Script adapted from: https://github.com/uber/horovod/blob/master/examples/tensorflow_word2vec.py
# ======================================
"""Basic word2vec example."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import os
import random
import zipfile
import argparse
import numpy as np
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import horovod.tensorflow as hvd
from azureml.core.run import Run
# Horovod: initialize Horovod.
hvd.init()
parser = argparse.ArgumentParser()
parser.add_argument('--input_data', type=str, help='training data')
args = parser.parse_args()
input_data = args.input_data
print("the input data is at %s" % input_data)
# Step 1: Download the data.
url = 'http://mattmahoney.net/dc/text8.zip'
def maybe_download(filename, expected_bytes):
"""Download a file if not present, and make sure it's the right size."""
if not filename:
filename = "text8.zip"
if not os.path.exists(filename):
print("Downloading the data from http://mattmahoney.net/dc/text8.zip")
filename, _ = urllib.request.urlretrieve(url, filename)
else:
print("Use the data from %s" % input_data)
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified', filename)
else:
print(statinfo.st_size)
raise Exception(
'Failed to verify ' + url + '. Can you get to it with a browser?')
return filename
filename = maybe_download(input_data, 31344016)
# Read the data into a list of strings.
def read_data(filename):
"""Extract the first file enclosed in a zip file as a list of words."""
with zipfile.ZipFile(filename) as f:
data = tf.compat.as_str(f.read(f.namelist()[0])).split()
return data
vocabulary = read_data(filename)
print('Data size', len(vocabulary))
# Step 2: Build the dictionary and replace rare words with UNK token.
vocabulary_size = 50000
def build_dataset(words, n_words):
"""Process raw inputs into a dataset."""
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(n_words - 1))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
data.append(index)
count[0][1] = unk_count
reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reversed_dictionary
data, count, dictionary, reverse_dictionary = build_dataset(vocabulary,
vocabulary_size)
del vocabulary # Hint to reduce memory.
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
# Step 3: Function to generate a training batch for the skip-gram model.
def generate_batch(batch_size, num_skips, skip_window):
assert num_skips <= 2 * skip_window
# Adjust batch_size to match num_skips
batch_size = batch_size // num_skips * num_skips
span = 2 * skip_window + 1 # [ skip_window target skip_window ]
# Backtrack a little bit to avoid skipping words in the end of a batch
data_index = random.randint(0, len(data) - span - 1)
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
buffer = collections.deque(maxlen=span)
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
for i in range(batch_size // num_skips):
target = skip_window # target label at the center of the buffer
targets_to_avoid = [skip_window]
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint(0, span - 1)
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, 0] = buffer[target]
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
return batch, labels
batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
for i in range(8):
print(batch[i], reverse_dictionary[batch[i]],
'->', labels[i, 0], reverse_dictionary[labels[i, 0]])
# Step 4: Build and train a skip-gram model.
max_batch_size = 128
embedding_size = 128 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
num_skips = 2 # How many times to reuse an input to generate a label.
# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
num_sampled = 64 # Number of negative examples to sample.
graph = tf.Graph()
with graph.as_default():
# Input data.
train_inputs = tf.placeholder(tf.int32, shape=[None])
train_labels = tf.placeholder(tf.int32, shape=[None, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Look up embeddings for inputs.
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# Construct the variables for the NCE loss
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
# Compute the average NCE loss for the batch.
# tf.nce_loss automatically draws a new sample of the negative labels each
# time we evaluate the loss.
loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))
# Horovod: adjust learning rate based on number of GPUs.
optimizer = tf.train.GradientDescentOptimizer(1.0 * hvd.size())
# Horovod: add Horovod Distributed Optimizer.
optimizer = hvd.DistributedOptimizer(optimizer)
train_op = optimizer.minimize(loss)
# Compute the cosine similarity between minibatch examples and all embeddings.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
similarity = tf.matmul(
valid_embeddings, normalized_embeddings, transpose_b=True)
# Add variable initializer.
init = tf.global_variables_initializer()
# Horovod: broadcast initial variable states from rank 0 to all other processes.
# This is necessary to ensure consistent initialization of all workers when
# training is started with random weights or restored from a checkpoint.
bcast = hvd.broadcast_global_variables(0)
# Step 5: Begin training.
# Horovod: adjust number of steps based on number of GPUs.
num_steps = 4000 // hvd.size() + 1
# Horovod: pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())
with tf.Session(graph=graph, config=config) as session:
# We must initialize all variables before we use them.
init.run()
bcast.run()
print('Initialized')
run = Run.get_context()
average_loss = 0
for step in xrange(num_steps):
# simulate various sentence length by randomization
batch_size = random.randint(max_batch_size // 2, max_batch_size)
batch_inputs, batch_labels = generate_batch(
batch_size, num_skips, skip_window)
feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}
# We perform one update step by evaluating the optimizer op (including it
# in the list of returned values for session.run()
_, loss_val = session.run([train_op, loss], feed_dict=feed_dict)
average_loss += loss_val
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print('Average loss at step ', step, ': ', average_loss)
run.log("Loss", average_loss)
average_loss = 0
final_embeddings = normalized_embeddings.eval()
# Evaluate similarity in the end on worker 0.
if hvd.rank() == 0:
sim = similarity.eval()
for i in xrange(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log_str = 'Nearest to %s:' % valid_word
for k in xrange(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = '%s %s,' % (log_str, close_word)
print(log_str)

View File

@@ -0,0 +1,321 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/ml-frameworks/tensorflow/training/distributed-tensorflow-with-parameter-server/distributed-tensorflow-with-parameter-server.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Distributed TensorFlow with parameter server\n",
"In this tutorial, you will train a TensorFlow model on the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset using native [distributed TensorFlow](https://www.tensorflow.org/deploy/distributed)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning (AML)\n",
"* If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) to:\n",
" * install the AML SDK\n",
" * create a workspace and its configuration file (`config.json`)\n",
"* Review the [tutorial](../train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) on single-node TensorFlow training using the SDK"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"Diagnostics"
]
},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# choose a name for your cluster\n",
"cluster_name = \"gpu-cluster\"\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target.')\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', \n",
" max_nodes=4)\n",
"\n",
" # create the cluster\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"\n",
" compute_target.wait_for_completion(show_output=True)\n",
"\n",
"# use get_status() to get a detailed status for the current cluster. \n",
"print(compute_target.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train model on the remote compute\n",
"Now that we have the cluster ready to go, let's run our distributed training job."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a project directory\n",
"Create a directory that will contain all the necessary code from your local machine that you will need access to on the remote resource. This includes the training script, and any additional files your training script depends on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"project_folder = './tf-distr-ps'\n",
"os.makedirs(project_folder, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copy the training script `tf_mnist_replica.py` into this project directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import shutil\n",
"\n",
"shutil.copy('tf_mnist_replica.py', project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create an experiment\n",
"Create an [Experiment](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#experiment) to track all the runs in your workspace for this distributed TensorFlow tutorial. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"experiment_name = 'tf-distr-ps'\n",
"experiment = Experiment(ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a TensorFlow estimator\n",
"The AML SDK's TensorFlow estimator enables you to easily submit TensorFlow training jobs for both single-node and distributed runs. For more information on the TensorFlow estimator, refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-tensorflow)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.dnn import TensorFlow, ParameterServer\n",
"\n",
"script_params={\n",
" '--num_gpus': 1,\n",
" '--train_steps': 500\n",
"}\n",
"\n",
"estimator = TensorFlow(source_directory=project_folder,\n",
" compute_target=compute_target,\n",
" script_params=script_params,\n",
" entry_script='tf_mnist_replica.py',\n",
" node_count=2,\n",
" distributed_training=ParameterServer(worker_count=2),\n",
" use_gpu=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code specifies that we will run our training script on `2` nodes, with two workers and one parameter server. In order to execute a native distributed TensorFlow run, you must provide the argument `distributed_backend=ParameterServer()`. Using this estimator with these settings, TensorFlow and its dependencies will be installed for you. However, if your script also uses other packages, make sure to install them via the `TensorFlow` constructor's `pip_packages` or `conda_packages` parameters."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit job\n",
"Run your experiment by submitting your estimator object. Note that this call is asynchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run = experiment.submit(estimator)\n",
"print(run)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor your run\n",
"You can monitor the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively, you can block until the script has completed training before running more code."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.wait_for_completion(show_output=True) # this provides a verbose log"
]
}
],
"metadata": {
"authors": [
{
"name": "ninhu"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,5 @@
name: distributed-tensorflow-with-parameter-server
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -0,0 +1,271 @@
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0
# Script adapted from:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/dist_test/python/mnist_replica.py
# ==============================================================================
"""Distributed MNIST training and validation, with model replicas.
A simple softmax model with one hidden layer is defined. The parameters
(weights and biases) are located on one parameter server (ps), while the ops
are executed on two worker nodes by default. The TF sessions also run on the
worker node.
Multiple invocations of this script can be done in parallel, with different
values for --task_index. There should be exactly one invocation with
--task_index, which will create a master session that carries out variable
initialization. The other, non-master, sessions will wait for the master
session to finish the initialization before proceeding to the training stage.
The coordination between the multiple worker invocations occurs due to
the definition of the parameters on the same ps devices. The parameter updates
from one worker is visible to all other workers. As such, the workers can
perform forward computation and gradient calculation in parallel, which
should lead to increased training speed for the simple model.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import math
import sys
import tempfile
import time
import json
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from azureml.core.run import Run
flags = tf.app.flags
flags.DEFINE_string("data_dir", "/tmp/mnist-data",
"Directory for storing mnist data")
flags.DEFINE_boolean("download_only", False,
"Only perform downloading of data; Do not proceed to "
"session preparation, model definition or training")
flags.DEFINE_integer("num_gpus", 0, "Total number of gpus for each machine."
"If you don't use GPU, please set it to '0'")
flags.DEFINE_integer("replicas_to_aggregate", None,
"Number of replicas to aggregate before parameter update "
"is applied (For sync_replicas mode only; default: "
"num_workers)")
flags.DEFINE_integer("hidden_units", 100,
"Number of units in the hidden layer of the NN")
flags.DEFINE_integer("train_steps", 200,
"Number of (global) training steps to perform")
flags.DEFINE_integer("batch_size", 100, "Training batch size")
flags.DEFINE_float("learning_rate", 0.01, "Learning rate")
flags.DEFINE_boolean(
"sync_replicas", False,
"Use the sync_replicas (synchronized replicas) mode, "
"wherein the parameter updates from workers are aggregated "
"before applied to avoid stale gradients")
flags.DEFINE_boolean(
"existing_servers", False, "Whether servers already exists. If True, "
"will use the worker hosts via their GRPC URLs (one client process "
"per worker host). Otherwise, will create an in-process TensorFlow "
"server.")
FLAGS = flags.FLAGS
IMAGE_PIXELS = 28
def main(unused_argv):
data_root = os.path.join("outputs", "MNIST")
mnist = None
tf_config = os.environ.get("TF_CONFIG")
if not tf_config or tf_config == "":
raise ValueError("TF_CONFIG not found.")
tf_config_json = json.loads(tf_config)
cluster = tf_config_json.get('cluster')
job_name = tf_config_json.get('task', {}).get('type')
task_index = tf_config_json.get('task', {}).get('index')
job_name = "worker" if job_name == "master" else job_name
sentinel_path = os.path.join(data_root, "complete.txt")
if job_name == "worker" and task_index == 0:
mnist = input_data.read_data_sets(data_root, one_hot=True)
with open(sentinel_path, 'w+') as f:
f.write("download complete")
else:
while not os.path.exists(sentinel_path):
time.sleep(0.01)
mnist = input_data.read_data_sets(data_root, one_hot=True)
if FLAGS.download_only:
sys.exit(0)
print("job name = %s" % job_name)
print("task index = %d" % task_index)
print("number of GPUs = %d" % FLAGS.num_gpus)
# Construct the cluster and start the server
cluster_spec = tf.train.ClusterSpec(cluster)
# Get the number of workers.
num_workers = len(cluster_spec.task_indices("worker"))
if not FLAGS.existing_servers:
# Not using existing servers. Create an in-process server.
server = tf.train.Server(
cluster_spec, job_name=job_name, task_index=task_index)
if job_name == "ps":
server.join()
is_chief = (task_index == 0)
if FLAGS.num_gpus > 0:
# Avoid gpu allocation conflict: now allocate task_num -> #gpu
# for each worker in the corresponding machine
gpu = (task_index % FLAGS.num_gpus)
worker_device = "/job:worker/task:%d/gpu:%d" % (task_index, gpu)
elif FLAGS.num_gpus == 0:
# Just allocate the CPU to worker server
cpu = 0
worker_device = "/job:worker/task:%d/cpu:%d" % (task_index, cpu)
# The device setter will automatically place Variables ops on separate
# parameter servers (ps). The non-Variable ops will be placed on the workers.
# The ps use CPU and workers use corresponding GPU
with tf.device(
tf.train.replica_device_setter(
worker_device=worker_device,
ps_device="/job:ps/cpu:0",
cluster=cluster)):
global_step = tf.Variable(0, name="global_step", trainable=False)
# Variables of the hidden layer
hid_w = tf.Variable(
tf.truncated_normal(
[IMAGE_PIXELS * IMAGE_PIXELS, FLAGS.hidden_units],
stddev=1.0 / IMAGE_PIXELS),
name="hid_w")
hid_b = tf.Variable(tf.zeros([FLAGS.hidden_units]), name="hid_b")
# Variables of the softmax layer
sm_w = tf.Variable(
tf.truncated_normal(
[FLAGS.hidden_units, 10],
stddev=1.0 / math.sqrt(FLAGS.hidden_units)),
name="sm_w")
sm_b = tf.Variable(tf.zeros([10]), name="sm_b")
# Ops: located on the worker specified with task_index
x = tf.placeholder(tf.float32, [None, IMAGE_PIXELS * IMAGE_PIXELS])
y_ = tf.placeholder(tf.float32, [None, 10])
hid_lin = tf.nn.xw_plus_b(x, hid_w, hid_b)
hid = tf.nn.relu(hid_lin)
y = tf.nn.softmax(tf.nn.xw_plus_b(hid, sm_w, sm_b))
cross_entropy = -tf.reduce_sum(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
opt = tf.train.AdamOptimizer(FLAGS.learning_rate)
if FLAGS.sync_replicas:
if FLAGS.replicas_to_aggregate is None:
replicas_to_aggregate = num_workers
else:
replicas_to_aggregate = FLAGS.replicas_to_aggregate
opt = tf.train.SyncReplicasOptimizer(
opt,
replicas_to_aggregate=replicas_to_aggregate,
total_num_replicas=num_workers,
name="mnist_sync_replicas")
train_step = opt.minimize(cross_entropy, global_step=global_step)
if FLAGS.sync_replicas:
local_init_op = opt.local_step_init_op
if is_chief:
local_init_op = opt.chief_init_op
ready_for_local_init_op = opt.ready_for_local_init_op
# Initial token and chief queue runners required by the sync_replicas mode
chief_queue_runner = opt.get_chief_queue_runner()
sync_init_op = opt.get_init_tokens_op()
init_op = tf.global_variables_initializer()
train_dir = tempfile.mkdtemp()
if FLAGS.sync_replicas:
sv = tf.train.Supervisor(
is_chief=is_chief,
logdir=train_dir,
init_op=init_op,
local_init_op=local_init_op,
ready_for_local_init_op=ready_for_local_init_op,
recovery_wait_secs=1,
global_step=global_step)
else:
sv = tf.train.Supervisor(
is_chief=is_chief,
logdir=train_dir,
init_op=init_op,
recovery_wait_secs=1,
global_step=global_step)
sess_config = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=False,
device_filters=["/job:ps",
"/job:worker/task:%d" % task_index])
# The chief worker (task_index==0) session will prepare the session,
# while the remaining workers will wait for the preparation to complete.
if is_chief:
print("Worker %d: Initializing session..." % task_index)
else:
print("Worker %d: Waiting for session to be initialized..." %
task_index)
if FLAGS.existing_servers:
server_grpc_url = "grpc://" + task_index
print("Using existing server at: %s" % server_grpc_url)
sess = sv.prepare_or_wait_for_session(server_grpc_url, config=sess_config)
else:
sess = sv.prepare_or_wait_for_session(server.target, config=sess_config)
print("Worker %d: Session initialization complete." % task_index)
if FLAGS.sync_replicas and is_chief:
# Chief worker will start the chief queue runner and call the init op.
sess.run(sync_init_op)
sv.start_queue_runners(sess, [chief_queue_runner])
# Perform training
time_begin = time.time()
print("Training begins @ %f" % time_begin)
local_step = 0
while True:
# Training feed
batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batch_size)
train_feed = {x: batch_xs, y_: batch_ys}
_, step = sess.run([train_step, global_step], feed_dict=train_feed)
local_step += 1
now = time.time()
print("%f: Worker %d: training step %d done (global step: %d)" %
(now, task_index, local_step, step))
if step >= FLAGS.train_steps:
break
time_end = time.time()
print("Training ends @ %f" % time_end)
training_time = time_end - time_begin
print("Training elapsed time: %f s" % training_time)
# Validation feed
val_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
val_xent = sess.run(cross_entropy, feed_dict=val_feed)
print("After %d training step(s), validation cross entropy = %g" %
(FLAGS.train_steps, val_xent))
if job_name == "worker" and task_index == 0:
run = Run.get_context()
run.log("CrossEntropy", val_xent)
if __name__ == "__main__":
tf.app.run()

View File

@@ -0,0 +1,123 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import numpy as np
import argparse
import os
import re
import tensorflow as tf
from azureml.core import Run
from utils import load_data
print("TensorFlow version:", tf.VERSION)
parser = argparse.ArgumentParser()
parser.add_argument('--data-folder', type=str, dest='data_folder', help='data folder mounting point')
parser.add_argument('--resume-from', type=str, default=None,
help='location of the model or checkpoint files from where to resume the training')
args = parser.parse_args()
previous_model_location = args.resume_from
# You can also use environment variable to get the model/checkpoint files location
# previous_model_location = os.path.expandvars(os.getenv("AZUREML_DATAREFERENCE_MODEL_LOCATION", None))
data_folder = os.path.join(args.data_folder, 'mnist')
print('training dataset is stored here:', data_folder)
X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0
X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0
y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)
y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep='\n')
training_set_size = X_train.shape[0]
n_inputs = 28 * 28
n_h1 = 100
n_h2 = 100
n_outputs = 10
learning_rate = 0.01
n_epochs = 20
batch_size = 50
with tf.name_scope('network'):
# construct the DNN
X = tf.placeholder(tf.float32, shape=(None, n_inputs), name='X')
y = tf.placeholder(tf.int64, shape=(None), name='y')
h1 = tf.layers.dense(X, n_h1, activation=tf.nn.relu, name='h1')
h2 = tf.layers.dense(h1, n_h2, activation=tf.nn.relu, name='h2')
output = tf.layers.dense(h2, n_outputs, name='output')
with tf.name_scope('train'):
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=output)
loss = tf.reduce_mean(cross_entropy, name='loss')
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss)
with tf.name_scope('eval'):
correct = tf.nn.in_top_k(output, y, 1)
acc_op = tf.reduce_mean(tf.cast(correct, tf.float32))
init = tf.global_variables_initializer()
saver = tf.train.Saver()
# start an Azure ML run
run = Run.get_context()
with tf.Session() as sess:
start_epoch = 0
if previous_model_location:
checkpoint_file_path = tf.train.latest_checkpoint(previous_model_location)
saver.restore(sess, checkpoint_file_path)
checkpoint_filename = os.path.basename(checkpoint_file_path)
num_found = re.search(r'\d+', checkpoint_filename)
if num_found:
start_epoch = int(num_found.group(0))
print("Resuming from epoch {}".format(str(start_epoch)))
else:
init.run()
for epoch in range(start_epoch, n_epochs):
# randomly shuffle training set
indices = np.random.permutation(training_set_size)
X_train = X_train[indices]
y_train = y_train[indices]
# batch index
b_start = 0
b_end = b_start + batch_size
for _ in range(training_set_size // batch_size):
# get a batch
X_batch, y_batch = X_train[b_start: b_end], y_train[b_start: b_end]
# update batch index for the next batch
b_start = b_start + batch_size
b_end = min(b_start + batch_size, training_set_size)
# train
sess.run(train_op, feed_dict={X: X_batch, y: y_batch})
# evaluate training set
acc_train = acc_op.eval(feed_dict={X: X_batch, y: y_batch})
# evaluate validation set
acc_val = acc_op.eval(feed_dict={X: X_test, y: y_test})
# log accuracies
run.log('training_acc', np.float(acc_train))
run.log('validation_acc', np.float(acc_val))
print(epoch, '-- Training accuracy:', acc_train, '\b Validation accuracy:', acc_val)
y_hat = np.argmax(output.eval(feed_dict={X: X_test}), axis=1)
if epoch % 5 == 0:
saver.save(sess, './outputs/', global_step=epoch)
# saving only half of the model and resuming again from same epoch
if not previous_model_location and epoch == 10:
break
run.log('final_acc', np.float(acc_val))

View File

@@ -0,0 +1,487 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/ml-frameworks/tensorflow/training/train-tensorflow-resume-training/train-tensorflow-resume-training.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Resuming Tensorflow training from previous run\n",
"In this tutorial, you will resume a mnist model in TensorFlow from a previously submitted run."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning (AML)\n",
"* Go through the [configuration notebook](../../../configuration.ipynb) to:\n",
" * install the AML SDK\n",
" * create a workspace and its configuration file (`config.json`)\n",
"* Review the [tutorial](../train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) on single-node TensorFlow training using the SDK"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"Diagnostics"
]
},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# choose a name for your cluster\n",
"cluster_name = \"gpu-cluster\"\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target.')\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', \n",
" max_nodes=4)\n",
"\n",
" # create the cluster\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"\n",
" compute_target.wait_for_completion(show_output=True)\n",
"\n",
"# use get_status() to get a detailed status for the current cluster. \n",
"print(compute_target.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code creates a GPU cluster. If you instead want to create a CPU cluster, provide a different VM size to the `vm_size` parameter, such as `STANDARD_D2_V2`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Upload data to datastore\n",
"To make data accessible for remote training, AML provides a convenient way to do so via a [Datastore](https://docs.microsoft.com/azure/machine-learning/service/how-to-access-data). The datastore provides a mechanism for you to upload/download data to Azure Storage, and interact with it from your remote compute targets. \n",
"\n",
"If your data is already stored in Azure, or you download the data as part of your training script, you will not need to do this step. For this tutorial, although you can download the data in your training script, we will demonstrate how to upload the training data to a datastore and access it during training to illustrate the datastore functionality."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First download the data from Yan LeCun's web site directly and save them in a data folder locally."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import urllib\n",
"\n",
"os.makedirs('./data/mnist', exist_ok=True)\n",
"\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz', filename = './data/mnist/train-images.gz')\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz', filename = './data/mnist/train-labels.gz')\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', filename = './data/mnist/test-images.gz')\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', filename = './data/mnist/test-labels.gz')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Each workspace is associated with a default datastore. In this tutorial, we will upload the training data to this default datastore."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ds = ws.get_default_datastore()\n",
"print(ds.datastore_type, ds.account_name, ds.container_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Upload MNIST data to the default datastore."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ds.upload(src_dir='./data/mnist', target_path='mnist', overwrite=True, show_progress=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For convenience, let's get a reference to the datastore. In the next section, we can then pass this reference to our training script's `--data-folder` argument. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ds_data = ds.as_mount()\n",
"print(ds_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train model on the remote compute"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a project directory\n",
"Create a directory that will contain all the necessary code from your local machine that you will need access to on the remote resource. This includes the training script, and any additional files your training script depends on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"script_folder = './tf-resume-training'\n",
"os.makedirs(script_folder, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copy the training script `tf_mnist_with_checkpoint.py` into this project directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import shutil\n",
"\n",
"# the training logic is in the tf_mnist_with_checkpoint.py file.\n",
"shutil.copy('./tf_mnist_with_checkpoint.py', script_folder)\n",
"\n",
"# the utils.py just helps loading data from the downloaded MNIST dataset into numpy arrays.\n",
"shutil.copy('./utils.py', script_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create an experiment\n",
"Create an [Experiment](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#experiment) to track all the runs in your workspace for this distributed TensorFlow tutorial. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"experiment_name = 'tf-resume-training'\n",
"experiment = Experiment(ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a TensorFlow estimator\n",
"The AML SDK's TensorFlow estimator enables you to easily submit TensorFlow training jobs for both single-node and distributed runs. For more information on the TensorFlow estimator, refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-tensorflow).\n",
"\n",
"The TensorFlow estimator also takes a `framework_version` parameter -- if no version is provided, the estimator will default to the latest version supported by AzureML. Use `TensorFlow.get_supported_versions()` to get a list of all versions supported by your current SDK version or see the [SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.dnn?view=azure-ml-py) for the versions supported in the most current release."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.dnn import TensorFlow\n",
"\n",
"script_params={\n",
" '--data-folder': ds_data\n",
"}\n",
"\n",
"estimator= TensorFlow(source_directory=script_folder,\n",
" compute_target=compute_target,\n",
" script_params=script_params,\n",
" entry_script='tf_mnist_with_checkpoint.py')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the above code, we passed our training data reference `ds_data` to our script's `--data-folder` argument. This will 1) mount our datastore on the remote compute and 2) provide the path to the data zip file on our datastore."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit job\n",
"### Run your experiment by submitting your estimator object. Note that this call is asynchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run = experiment.submit(estimator)\n",
"print(run)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor your run\n",
"You can monitor the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively, you can block until the script has completed training before running more code."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Now let's resume the training from the above run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we will get the DataPath to the outputs directory of the above run which\n",
"contains the checkpoint files and/or model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_location = run._get_outputs_datapath()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we will create a new TensorFlow estimator and pass in the model location. On passing 'resume_from' parameter, a new entry in script_params is created with key as 'resume_from' and value as the model/checkpoint files location and the location gets automatically mounted on the compute target."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.dnn import TensorFlow\n",
"\n",
"script_params={\n",
" '--data-folder': ds_data\n",
"}\n",
"\n",
"estimator2 = TensorFlow(source_directory=script_folder,\n",
" compute_target=compute_target,\n",
" script_params=script_params,\n",
" entry_script='tf_mnist_with_checkpoint.py',\n",
" resume_from=model_location)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now you can submit the experiment and it should resume from previous run's checkpoint files."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run2 = experiment.submit(estimator2)\n",
"print(run2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run2.wait_for_completion(show_output=True)"
]
}
],
"metadata": {
"authors": [
{
"name": "hesuri"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"msauthor": "hesuri"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,5 @@
name: train-tensorflow-resume-training
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -0,0 +1,27 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import gzip
import numpy as np
import struct
# load compressed MNIST gz files and return numpy arrays
def load_data(filename, label=False):
with gzip.open(filename) as gz:
struct.unpack('I', gz.read(4))
n_items = struct.unpack('>I', gz.read(4))
if not label:
n_rows = struct.unpack('>I', gz.read(4))[0]
n_cols = struct.unpack('>I', gz.read(4))[0]
res = np.frombuffer(gz.read(n_items[0] * n_rows * n_cols), dtype=np.uint8)
res = res.reshape(n_items[0], n_rows * n_cols)
else:
res = np.frombuffer(gz.read(n_items[0]), dtype=np.uint8)
res = res.reshape(n_items[0], 1)
return res
# one-hot encode a 1-D array
def one_hot_encode(array, num_of_classes):
return np.eye(num_of_classes)[array.reshape(-1)]

View File

@@ -100,7 +100,7 @@
"\n",
"# Check core SDK version number\n",
"\n",
"print(\"This notebook was created using SDK version 1.0.60, you are currently running version\", azureml.core.VERSION)"
"print(\"This notebook was created using SDK version 1.0.62, you are currently running version\", azureml.core.VERSION)"
]
},
{

View File

@@ -3,18 +3,10 @@
These examples show you:
1. [How to use the Estimator pattern in Azure ML](how-to-use-estimator)
2. [Train using TensorFlow Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-tensorflow)
3. [Train using Pytorch Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-pytorch)
4. [Train using Keras and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-keras)
5. [Train using Chainer Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-chainer)
6. [Distributed training using TensorFlow and Parameter Server](distributed-tensorflow-with-parameter-server)
7. [Distributed training using TensorFlow and Horovod](distributed-tensorflow-with-horovod)
8. [Distributed training using Pytorch and Horovod](distributed-pytorch-with-horovod)
9. [Distributed training using CNTK and custom Docker image](distributed-cntk-with-custom-docker)
10. [Distributed training using Chainer](distributed-chainer)
11. [Export run history records to Tensorboard](export-run-history-to-tensorboard)
12. [Use TensorBoard to monitor training execution](tensorboard)
13. [Resuming training from previous run](train-tensorflow-resume-training)
2. [Train using Keras and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-keras)
3. [Distributed training using CNTK and custom Docker image](distributed-cntk-with-custom-docker)
4. [Export run history records to Tensorboard](export-run-history-to-tensorboard)
5. [Use TensorBoard to monitor training execution](tensorboard)
Learn more about how to use `Estimator` class to [train deep neural networks with Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-ml-models).

View File

@@ -4,6 +4,7 @@
import numpy as np
import argparse
import os
import glob
import matplotlib.pyplot as plt
@@ -36,11 +37,15 @@ data_folder = args.data_folder
print('training dataset is stored here:', data_folder)
X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0
X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0
X_train_path = glob.glob(os.path.join(data_folder, '**/train-images-idx3-ubyte.gz'), recursive=True)[0]
X_test_path = glob.glob(os.path.join(data_folder, '**/t10k-images-idx3-ubyte.gz'), recursive=True)[0]
y_train_path = glob.glob(os.path.join(data_folder, '**/train-labels-idx1-ubyte.gz'), recursive=True)[0]
y_test_path = glob.glob(os.path.join(data_folder, '**/t10k-labels-idx1-ubyte.gz'), recursive=True)[0]
y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)
y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)
X_train = load_data(X_train_path, False) / 255.0
X_test = load_data(X_test_path, False) / 255.0
y_train = load_data(y_train_path, True).reshape(-1)
y_test = load_data(y_test_path, True).reshape(-1)
training_set_size = X_train.shape[0]

View File

@@ -132,14 +132,18 @@
},
{
"cell_type": "markdown",
"metadata": {
"nbpresent": {
"id": "defe921f-8097-44c3-8336-8af6700804a7"
}
},
"metadata": {},
"source": [
"## Download MNIST dataset\n",
"In order to train on the MNIST dataset we will first need to download it from Yan LeCun's web site directly and save them in a `data` folder locally."
"## Explore data\n",
"\n",
"Before you train a model, you need to understand the data that you are using to train it. In this section you learn how to:\n",
"\n",
"* Download the MNIST dataset\n",
"* Display some sample images\n",
"\n",
"### Download the MNIST dataset\n",
"\n",
"Download the MNIST dataset and save the files into a `data` directory locally. Images and labels for both training and testing are downloaded."
]
},
{
@@ -148,47 +152,42 @@
"metadata": {},
"outputs": [],
"source": [
"import urllib\n",
"import urllib.request\n",
"\n",
"os.makedirs('./data/mnist', exist_ok=True)\n",
"data_folder = os.path.join(os.getcwd(), 'data')\n",
"os.makedirs(data_folder, exist_ok=True)\n",
"\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz', filename='./data/mnist/train-images.gz')\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz', filename='./data/mnist/train-labels.gz')\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', filename='./data/mnist/test-images.gz')\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', filename='./data/mnist/test-labels.gz')"
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz', filename=os.path.join(data_folder, 'train-images.gz'))\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz', filename=os.path.join(data_folder, 'train-labels.gz'))\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', filename=os.path.join(data_folder, 'test-images.gz'))\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', filename=os.path.join(data_folder, 'test-labels.gz'))"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpresent": {
"id": "c3f2f57c-7454-4d3e-b38d-b0946cf066ea"
}
},
"metadata": {},
"source": [
"## Show some sample images\n",
"Let's load the downloaded compressed file into numpy arrays using some utility functions included in the `utils.py` library file from the current folder. Then we use `matplotlib` to plot 30 random images from the dataset along with their labels."
"### Display some sample images\n",
"\n",
"Load the compressed files into `numpy` arrays. Then use `matplotlib` to plot 30 random images from the dataset with their labels above them. Note this step requires a `load_data` function that's included in an `utils.py` file. This file is included in the sample folder. Please make sure it is placed in the same folder as this notebook. The `load_data` function simply parses the compressed files into numpy arrays."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"nbpresent": {
"id": "396d478b-34aa-4afa-9898-cdce8222a516"
}
},
"metadata": {},
"outputs": [],
"source": [
"# make sure utils.py is in the same directory as this code\n",
"from utils import load_data, one_hot_encode\n",
"\n",
"# note we also shrink the intensity values (X) from 0-255 to 0-1. This helps the neural network converge faster.\n",
"X_train = load_data('./data/mnist/train-images.gz', False) / 255.0\n",
"y_train = load_data('./data/mnist/train-labels.gz', True).reshape(-1)\n",
"\n",
"X_test = load_data('./data/mnist/test-images.gz', False) / 255.0\n",
"y_test = load_data('./data/mnist/test-labels.gz', True).reshape(-1)\n",
"# note we also shrink the intensity values (X) from 0-255 to 0-1. This helps the model converge faster.\n",
"X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0\n",
"X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0\n",
"y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)\n",
"y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)\n",
"\n",
"# now let's show some randomly chosen images from the training set.\n",
"count = 0\n",
"sample_size = 30\n",
"plt.figure(figsize = (16, 6))\n",
@@ -197,8 +196,8 @@
" plt.subplot(1, sample_size, count)\n",
" plt.axhline('')\n",
" plt.axvline('')\n",
" plt.text(x = 10, y = -10, s = y_train[i], fontsize = 18)\n",
" plt.imshow(X_train[i].reshape(28, 28), cmap = plt.cm.Greys)\n",
" plt.text(x=10, y=-10, s=y_train[i], fontsize=18)\n",
" plt.imshow(X_train[i].reshape(28, 28), cmap=plt.cm.Greys)\n",
"plt.show()"
]
},
@@ -206,8 +205,19 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Upload MNIST dataset to default datastore \n",
"A [datastore](https://docs.microsoft.com/azure/machine-learning/service/how-to-access-data) is a place where data can be stored that is then made accessible to a Run either by means of mounting or copying the data to the compute target. A datastore can either be backed by an Azure Blob Storage or and Azure File Share (ADLS will be supported in the future). For simple data handling, each workspace provides a default datastore that can be used, in case the data is not already in Blob Storage or File Share."
"Now you have an idea of what these images look like and the expected prediction outcome."
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpresent": {
"id": "defe921f-8097-44c3-8336-8af6700804a7"
}
},
"source": [
"## Create a FileDataset\n",
"A FileDataset references one or multiple files in your datastores or public urls. The files can be of any format. FileDataset provides you with the ability to download or mount the files to your compute. By creating a dataset, you create a reference to the data source location. If you applied any subsetting transformations to the dataset, they will be stored in the dataset as well. The data remains in its existing location, so no extra storage cost is incurred. [Learn More](https://aka.ms/azureml/howto/createdatasets)"
]
},
{
@@ -216,14 +226,22 @@
"metadata": {},
"outputs": [],
"source": [
"ds = ws.get_default_datastore()"
"from azureml.core.dataset import Dataset\n",
"\n",
"web_paths = [\n",
" 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',\n",
" 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',\n",
" 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',\n",
" 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz'\n",
" ]\n",
"dataset = Dataset.File.from_files(path = web_paths)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this next step, we will upload the training and test set into the workspace's default datastore, which we will then later be mount on an `AmlCompute` cluster for training."
"Use the `register()` method to register datasets to your workspace so they can be shared with others, reused across various experiments, and referred to by name in your training script."
]
},
{
@@ -232,7 +250,10 @@
"metadata": {},
"outputs": [],
"source": [
"ds.upload(src_dir='./data/mnist', target_path='mnist', overwrite=True, show_progress=True)"
"dataset = dataset.register(workspace = ws,\n",
" name = 'mnist dataset',\n",
" description='training and test dataset',\n",
" create_new_version=True)"
]
},
{
@@ -345,7 +366,7 @@
"source": [
"### Azure ML concepts \n",
"Please note the following three things in the code below:\n",
"1. The script accepts arguments using the argparse package. In this case there is one argument `--data_folder` which specifies the file system folder in which the script can find the MNIST data\n",
"1. The script accepts arguments using the argparse package. In this case there is one argument `--data_folder` which specifies the FileDataset in which the script can find the MNIST data\n",
"```\n",
" parser = argparse.ArgumentParser()\n",
" parser.add_argument('--data_folder')\n",
@@ -384,6 +405,36 @@
"The TensorFlow estimator is providing a simple way of launching a TensorFlow training job on a compute target. It will automatically provide a docker image that has TensorFlow installed. In this case, we add `keras` package (for the Keras framework obviously), and `matplotlib` package for plotting a \"Loss vs. Accuracy\" chart and record it in run history."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.dataset import Dataset\n",
"\n",
"dataset = Dataset.get_by_name(ws, 'mnist dataset')\n",
"\n",
"# list the files referenced by mnist dataset\n",
"dataset.to_path()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.environment import Environment\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# set up environment\n",
"env = Environment('my_env')\n",
"cd = CondaDependencies.create(pip_packages=['keras','azureml-sdk','tensorflow-gpu','matplotlib','azureml-dataprep[pandas,fuse]>=1.1.14'])\n",
"\n",
"env.python.conda_dependencies = cd"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -393,7 +444,7 @@
"from azureml.train.dnn import TensorFlow\n",
"\n",
"script_params = {\n",
" '--data-folder': ds.path('mnist').as_mount(),\n",
" '--data-folder': dataset.as_named_input('mnist').as_mount(),\n",
" '--batch-size': 50,\n",
" '--first-layer-neurons': 300,\n",
" '--second-layer-neurons': 100,\n",
@@ -403,25 +454,8 @@
"est = TensorFlow(source_directory=script_folder,\n",
" script_params=script_params,\n",
" compute_target=compute_target, \n",
" pip_packages=['keras', 'matplotlib'],\n",
" entry_script='keras_mnist.py', \n",
" use_gpu=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And if you are curious, this is what the mounting point looks like:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(ds.path('mnist').as_mount())"
" environment_definition= env)"
]
},
{
@@ -698,11 +732,10 @@
"outputs": [],
"source": [
"est = TensorFlow(source_directory=script_folder,\n",
" script_params={'--data-folder': ds.path('mnist').as_mount()},\n",
" script_params={'--data-folder': dataset.as_named_input('mnist').as_mount()},\n",
" compute_target=compute_target,\n",
" pip_packages=['keras', 'matplotlib'],\n",
" entry_script='keras_mnist.py', \n",
" use_gpu=True)"
" environment_definition= env)"
]
},
{
@@ -911,7 +944,7 @@
"metadata": {},
"source": [
"### Deploy to ACI\n",
"We are almost ready to deploy. Create a deployment configuration and specify the number of CPUs and gigbyte of RAM needed for your ACI container. "
"We are almost ready to deploy. Create the inference configuration and deployment configuration and deploy to ACI. This cell will run for about 7-8 minutes."
]
},
{
@@ -921,73 +954,35 @@
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
" auth_enabled=True, # this flag generates API keys to secure access\n",
" memory_gb=1, \n",
" tags={'name':'mnist', 'framework': 'Keras'},\n",
" description='Keras MLP on MNIST')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Deployment Process\n",
"Now we can deploy. **This cell will run for about 7-8 minutes**. Behind the scene, it will do the following:\n",
"1. **Build Docker image** \n",
"Build a Docker image using the scoring file (`score.py`), the environment file (`myenv.yml`), and the `model` object. \n",
"2. **Register image** \n",
"Register that image under the workspace. \n",
"3. **Ship to ACI** \n",
"And finally ship the image to the ACI infrastructure, start up a container in ACI using that image, and expose an HTTP endpoint to accept REST client calls."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import ContainerImage\n",
"\n",
"imgconfig = ContainerImage.image_configuration(execution_script=\"score.py\", \n",
" runtime=\"python\", \n",
" conda_file=\"myenv.yml\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.webservice import Webservice\n",
"from azureml.core.model import Model\n",
"\n",
"service = Webservice.deploy_from_model(workspace=ws,\n",
" name='keras-mnist-svc',\n",
" deployment_config=aciconfig,\n",
" models=[model],\n",
" image_config=imgconfig)\n",
"inference_config = InferenceConfig(runtime= \"python\", \n",
" entry_script=\"score.py\",\n",
" conda_file=\"myenv.yml\")\n",
"\n",
"service.wait_for_deployment(show_output=True)"
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1,\n",
" auth_enabled=True, # this flag generates API keys to secure access\n",
" memory_gb=1,\n",
" tags={'name': 'mnist', 'framework': 'Keras'},\n",
" description='Keras MLP on MNIST')\n",
"\n",
"service = Model.deploy(workspace=ws, \n",
" name='keras-mnist-svc', \n",
" models=[model], \n",
" inference_config=inference_config, \n",
" deployment_config=aciconfig)\n",
"\n",
"service.wait_for_deployment(True)\n",
"print(service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Tip: If something goes wrong with the deployment, the first thing to look at is the logs from the service by running the following command:**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(service.get_logs())"
"**Tip: If something goes wrong with the deployment, the first thing to look at is the logs from the service by running the following command:** `print(service.get_logs())`"
]
},
{
@@ -1047,7 +1042,7 @@
" font_color = 'red' if y_test[s] != result[i] else 'black'\n",
" clr_map = plt.cm.gray if y_test[s] != result[i] else plt.cm.Greys\n",
" \n",
" plt.text(x=10, y=-10, s=y_hat[s], fontsize=18, color=font_color)\n",
" plt.text(x=10, y=-10, s=y_test[s], fontsize=18, color=font_color)\n",
" plt.imshow(X_test[s].reshape(28, 28), cmap=clr_map)\n",
" \n",
" i = i + 1\n",
@@ -1106,8 +1101,7 @@
"metadata": {},
"source": [
"Let's look at the workspace after the web service was deployed. You should see \n",
"* a registered model named 'keras-mlp-mnist' and with the id 'model:1'\n",
"* an image called 'keras-mnist-svc' and with a docker image location pointing to your workspace's Azure Container Registry (ACR) \n",
"* a registered model named 'keras-mlp-mnist' and with the id 'model:1' \n",
"* a webservice called 'keras-mnist-svc' with some scoring URL"
]
},
@@ -1121,10 +1115,6 @@
"for name, model in models.items():\n",
" print(\"Model: {}, ID: {}\".format(name, model.id))\n",
" \n",
"images = ws.images\n",
"for name, image in images.items():\n",
" print(\"Image: {}, location: {}\".format(name, image.image_location))\n",
" \n",
"webservices = ws.webservices\n",
"for name, webservice in webservices.items():\n",
" print(\"Webservice: {}, scoring URI: {}\".format(name, webservice.scoring_uri))"
@@ -1169,7 +1159,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
"version": "3.6.9"
}
},
"nbformat": 4,

View File

@@ -9,4 +9,4 @@ Follow these sample notebooks to learn:
5. [Train in an HDI Spark cluster](train-in-spark): train a Spark ML model using an HDInsight Spark cluster as compute target.
6. [Train and hyperparameter tune on Iris Dataset with Scikit-learn](train-hyperparameter-tune-deploy-with-sklearn): train a model using the Scikit-learn estimator and tune hyperparameters with Hyperdrive.
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/training/README.png)
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/training/README.png)

View File

@@ -12,9 +12,10 @@ With Azure Machine Learning datasets, you can:
## Learn how to use Azure Machine Learning datasets:
* [Create and register datasets](https://aka.ms/azureml/howto/createdatasets)
* Use [Datasets in training](datasets-tutorial/train-with-datasets.ipynb)
* Use TabularDatasets in [automated machine learning training](https://aka.ms/automl-dataset)
* Use TabularDatasets in [training](https://aka.ms/tabulardataset-samplenotebook)
* Use FileDatasets in [training](https://aka.ms/filedataset-samplenotebook)
* Use FileDatasets in [image classification](https://aka.ms/filedataset-samplenotebook)
* Use FileDatasets in [deep learning with hyperparameter tuning](https://aka.ms/filedataset-hyperdrive)
* For existing Dataset users: [Dataset API change notice](dataset-api-change-notice.md)

View File

@@ -0,0 +1,796 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks//notebooks/work-with-data/datasets/datasets-tutorial/datasets-diff.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# <center>Detect drift using Dataset Diff API </center>\n",
"\n",
"<br>\n",
"<font size=2>\n",
" This notebook provides step by step instructions on how to compare two different datasets. It includes two parts\u00ef\u00bc\u0161\n",
" <br>&nbsp;&nbsp;&nbsp;&nbsp;&#x2611; compare two datasets using local compute;\n",
" <br>&nbsp;&nbsp;&nbsp;&nbsp;&#x2611; compare two datasets remotely using Azure ML compute.\n",
"</font>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Prerequisites and Setup\n",
"\n",
"<font size=2>This section is shared by both local and remote execution, you may need duplicate this section if splitting this notebook into separate local/remote notebooks.</font>\n",
"\n",
"\n",
"## Prerequisites\n",
"\n",
"### Install Supporting Packages"
]
},
{
"cell_type": "markdown",
"metadata": {
"scrolled": true
},
"source": [
"&nbsp;&nbsp;&nbsp;&nbsp;pip install scipy<br>\n",
"&nbsp;&nbsp;&nbsp;&nbsp;pip install tqdm<br>\n",
"&nbsp;&nbsp;&nbsp;&nbsp;pip install pandas<br>\n",
"&nbsp;&nbsp;&nbsp;&nbsp;pip install pyarrow<br>\n",
"&nbsp;&nbsp;&nbsp;&nbsp;pip install ipywidgets<br>\n",
"&nbsp;&nbsp;&nbsp;&nbsp;pip install lightgbm<br>\n",
"&nbsp;&nbsp;&nbsp;&nbsp;pip install matplotlib<br>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Install AzureML Packages"
]
},
{
"cell_type": "markdown",
"metadata": {
"scrolled": true
},
"source": [
"&nbsp;&nbsp;&nbsp;&nbsp;pip install --user azureml-core<br>\n",
"\n",
"&nbsp;&nbsp;&nbsp;&nbsp;pip install --user azureml-opendatasets<br>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"import warnings\n",
"import requests\n",
"import pandas as pd\n",
"import numpy as np\n",
"import ipywidgets as widgets\n",
"\n",
"import azureml.core\n",
"\n",
"from io import StringIO\n",
"from tqdm import tqdm\n",
"from IPython import display\n",
"from datetime import datetime, timedelta\n",
"from azureml.core import Datastore, Dataset\n",
"from azureml.opendatasets import NoaaIsdWeather\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Declare Variables For Demo\n",
"\n",
"Feel free to customize them."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"year = 2016\n",
"month = 1\n",
"date = 1\n",
"b_days = 2 # for baseline\n",
"t_days = 7 # for target\n",
"\n",
"local_folder = \"demo\"\n",
"baseline_file = 'baseline.csv'\n",
"\n",
"feature_columns = ['usaf', 'wban', 'latitude', 'longitude', 'elevation', 'temperature', 'p_k']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare Datasets\n",
"\n",
"<font size=2>The diff calcualtion is always between two datasets, here for demo, we use \"baseline\" and \"target\" to present them.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"os.makedirs(local_folder, exist_ok=True)\n",
"\n",
"local_baseline = os.path.join(local_folder, baseline_file)\n",
"\n",
"start_date = datetime(year, month, date)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare Baseline Dataset\n",
"<font size=2>Retrieve wether data from NOAA for declared days (b_days declared in above cell). It may takes 2 minutes for 2 days.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"start = start_date\n",
"isd = NoaaIsdWeather(start, start + timedelta(days=b_days))\n",
"\n",
"baseline_df = isd.to_pandas_dataframe()\n",
"baseline_df.head()\n",
"\n",
"baseline_df.to_csv(local_baseline)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare Target Dataset(s)\n",
"\n",
"<font size=2>Retrieve wether data from NOAA for declared days (t_days declared in above cell). It may takes 5 minutes for 7 days.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for day in tqdm(range(0, t_days)):\n",
" start = start_date + timedelta(days=day)\n",
" isd = NoaaIsdWeather(start, start + timedelta(days=1))\n",
"\n",
" target_df = isd.to_pandas_dataframe()\n",
" target_df = target_df[feature_columns]\n",
" target_df.to_csv(os.path.join(local_folder, 'target_{}.csv'.format(day)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Predefine Methods For Result Processing\n",
"\n",
"## Parse and Present Datasets' Diff Results\n",
"\n",
"<font size=2>Each diff result is a list of \"DiffMetric\" objects. Typically each objec present a detailed measurement output for a specific column.\n",
"<br><br>Below is an example of \"DiffMetric\" object:</font>\n",
"<font face=\"monospace\" size=1>\n",
"<br>&nbsp;&nbsp;&nbsp;&nbsp;{&nbsp;&nbsp;\n",
"<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'name':'percentage_difference_median',&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-->&nbsp;measurement&nbsp;name\n",
"<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'value':0.01270670472603889,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-->&nbsp;the result value a number to indicate how big the diff is for current measurement.\n",
"<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'extended_properties':{&nbsp;&nbsp;\n",
"</font><font face=\"monospace\" size=1 color=LightSteelBlue><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'action_id':'3d3da05d-0871-4cc9-93cb-f43859aae13b',&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-->&nbsp;(remote&nbsp;calculation&nbsp;only)&nbsp;action&nbsp;id\n",
"<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'from_dataset_id':'12edc566-8803-4e0f-ba91-c2ee05eeddee',&nbsp;&nbsp;-->&nbsp;(remote&nbsp;calculation&nbsp;only)&nbsp;baseline&nbsp;dataset\n",
"<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'from_dataset_version':'1',&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-->&nbsp;(remote&nbsp;calculation&nbsp;only)&nbsp;baseline&nbsp;version\n",
"<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'to_dataset_id':'9b85c9ba-50c2-4227-a9bc-91dee4a18228',&nbsp;&nbsp;&nbsp;&nbsp;-->&nbsp;(remote&nbsp;calculation&nbsp;only)&nbsp;target&nbsp;dataset\n",
"<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'to_dataset_version':'1',&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-->&nbsp;(remote&nbsp;calculation&nbsp;only)&nbsp;target&nbsp;version\n",
"</font><font face=\"monospace\" size=1><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'column_name':'elevation',&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-->&nbsp;column&nbsp;name&nbsp;in&nbsp;dataset,&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;could&nbsp;be&nbsp;['name':'datadrift_coefficient']&nbsp;for&nbsp;dataset&nbsp;level&nbsp;diff\n",
"<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'metric_category':'profile_diff'&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-->&nbsp;category,&nbsp;could&nbsp;be&nbsp;:<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;dataset_drift (dataset level)<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;profile_diff (column level)<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;statistical_distance (column level)\n",
"<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;}\n",
"<br>&nbsp;&nbsp;&nbsp;&nbsp;}\n",
"</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def parse_result(rst, columns, measurements):\n",
" columnlist = list(columns)\n",
" columnlist.insert(0, \"measurements \\ columns\")\n",
" measurementlist = list(measurements)\n",
" \n",
" daily_result = []\n",
" daily_result.append(columnlist)\n",
" \n",
" drift = None\n",
" daily_contribution = {}\n",
" \n",
" for m in measurements:\n",
" emptylist = ([''] * len(columns))\n",
" emptylist.insert(0, m)\n",
" daily_result.append(emptylist)\n",
"\n",
" for r in rst:\n",
" # get dataset level diff (drift)\n",
" if r.name == \"datadrift_coefficient\":\n",
" drift = r.value\n",
" # get diff (drift) contribution for each column:\n",
" elif r.name == \"datadrift_contribution\":\n",
" daily_contribution[r.extended_properties[\"column_name\"]] = r.value\n",
" # get column level diff measurements\n",
" else:\n",
" if \"column_name\" in r.extended_properties:\n",
" col = r.extended_properties[\"column_name\"]\n",
" msm = r.name\n",
" val = r.value\n",
" cid = columnlist.index(col)\n",
" kid = measurementlist.index(msm) + 1\n",
" daily_result[kid][cid] = val\n",
"\n",
" return daily_result, drift, daily_contribution"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Present Dataset Level Diff (aka drift)\n",
"\n",
"<font size=2>This method will generate two graphs, the left graph presents dataset level difference for all compared baseline-target pairs, the right graph presents dataset level difference contribution for each column so that we know which column impacts more.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"import matplotlib.dates as mdates\n",
"import matplotlib.pyplot as plt \n",
"import matplotlib as mpl\n",
"\n",
"def show_diff(drift_metrics, dates, columns, drift_contributions, summary_contribute, bottoms_contribute):\n",
" drifts = [drift_metrics[day] for day in drift_metrics]\n",
" daily_summary_contribution = list(summary_contribute.values())\n",
" xrange = pd.date_range(dates[0], dates[-1], freq='D')\n",
"\n",
" figure = plt.figure(figsize=(16, 4))\n",
" plt.tight_layout()\n",
"\n",
" # left graph\n",
" ax1 = plt.subplot(1, 2, 1)\n",
" ax1.grid()\n",
" plt.sca(ax1)\n",
" plt.title(\"Diff(Drift) Trend\\n\", fontsize=20)\n",
" plt.xticks(rotation=30)\n",
" plt.xlabel(\"Date\", fontsize=16)\n",
" plt.ylabel(\"Drift Coefficent\", fontsize=16)\n",
" plt.plot_date(dates, drifts, '-r', marker='.', linewidth=0.5, markersize=5)\n",
"\n",
" # right graph\n",
" ax2 = plt.subplot(1, 2, 2)\n",
" plt.sca(ax2)\n",
" plt.title(\"Drift Contribution of columns\\n\", fontsize=20)\n",
" plt.xticks(xrange, rotation=30)\n",
" plt.xlabel(\"Date\", fontsize=16)\n",
" plt.ylabel(\"Drift Contribution\", fontsize=16)\n",
"\n",
" yvals = ax2.get_yticks()\n",
" ax2.set_yticklabels(['{:,.2%}'.format(v) for v in yvals])\n",
" ax2.xaxis.set_major_formatter(mdates.DateFormatter('%Y%m-%d'))\n",
"\n",
" for c in columns:\n",
" contribution = []\n",
" for dt in drift_contributions:\n",
" contribution.append(drift_contributions[dt][c])\n",
" bar_ratio = [x / y for x, y in zip(contribution, daily_summary_contribution)]\n",
"\n",
" ax2.bar(dates, height=bar_ratio, bottom=bottoms_contribute)\n",
" bottoms_contribute = [x + y for x, y in zip(bottoms_contribute, bar_ratio)]\n",
"\n",
" plt.legend(columns)\n",
"\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Execute Datasets' Diff Calculation Locally\n",
"\n",
"<font size=2>Local execution let you to run in a Jupyter Notebook or Code editor in a local computer.</font>\n",
"\n",
"## Calculate Dataset Diff At Local\n",
"\n",
"### Create Baseline Dataset\n",
"\n",
"<font size=2>Create baseline dataset object from the retrieved baseline data.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Dataset\n",
"\n",
"baseline = Dataset.auto_read_files(local_baseline, include_path=True)\n",
"\n",
"# The baseline data is not filtered by feature columns list, thus all retrieved data columns will be listed below.\n",
"# You'll see \"Column1\" in the output, which is a default name added when the original column is not available.\n",
"baseline.get_profile()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Target Datasets\n",
"\n",
"<font size=2>Create target dataset objects from retrieved target data.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"targets = {}\n",
"\n",
"for day in tqdm(range(0, t_days)):\n",
" target = Dataset.auto_read_files(os.path.join(local_folder, 'target_{}.csv'.format(day)))\n",
" targets[day] = target"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate Diff Between Each Target Dataset And Baseline Dataset\n",
"\n",
"<font size=2>Compare each target dataset with baseline dataset to calculate diff between them.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"buf = {}\n",
"\n",
"columns = set()\n",
"measurements = set()\n",
"\n",
"for day in tqdm(range(0, t_days)):\n",
" diff_action = baseline.diff(rhs_dataset=targets[day])\n",
" diff_action.wait_for_completion()\n",
" \n",
" dt = (start_date + timedelta(days=day)).strftime(\"%Y-%m-%d\")\n",
" buf[dt] = diff_action._result\n",
" \n",
" for r in diff_action._result:\n",
" if r.name not in measurements:\n",
" measurements.add(r.name)\n",
" if \"column_name\" in r.extended_properties and r.extended_properties[\"column_name\"] not in columns:\n",
" columns.add(r.extended_properties[\"column_name\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Parse And Present Local Execution Results\n",
"\n",
"<font size=2>\n",
"<br>The diff outputs usually contains two different level information:\n",
"<br>&nbsp;&nbsp;&nbsp;&nbsp;1. General diff, aka dataset level diff. The output is a number between 0 and 1 to indicate what level the diff is. This dataset level diff is also called drift between two datasets.\n",
"<br>&nbsp;&nbsp;&nbsp;&nbsp;2. Detailed diff, aka column level diff. The output is a metrics organized like a 2-D array. One dimension is column names, that is why it's in column level. The other dimension are measurements. The diff calculation actually includes variuos measurements from different perspectives, each measurement will generate an index for each column to present how big impacts this column contributed.\n",
"</font>\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Parse and List Column Level Diff Results\n",
"\n",
"<font size=2>Here will iteratively list all details per each measurement per column calculated.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pandas import DataFrame\n",
"\n",
"dates = []\n",
"drift_metrics = {}\n",
"drift_contributions = {}\n",
"summary_contribute = {}\n",
"bottoms_contribute = []\n",
"\n",
"for dt, rst in buf.items():\n",
" dates.append(dt)\n",
" print(\"\\n---------------------------------------- Result of {} ----------------------------------------\".format(dt))\n",
" \n",
" daily_result, drift, daily_contribution = parse_result(rst, columns, measurements)\n",
" drift_metrics[dt] = drift\n",
" drift_contributions[dt] = daily_contribution\n",
"\n",
" sum_contribution = 0\n",
" bottoms_contribute.append(0)\n",
" for col, val in daily_contribution.items():\n",
" sum_contribution += val\n",
" summary_contribute[dt] = sum_contribution\n",
"\n",
" \n",
" display.display(pd.DataFrame(daily_result))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Present Dataset Level Diff (aka drift) In Graphs\n",
"\n",
"<font size=2>The left graph presents dataset level difference for all compared baseline-target pairs, the right graph presents dataset level difference contribution for each column so that we know which column impacts more.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"show_diff(drift_metrics, dates, columns, drift_contributions, summary_contribute, bottoms_contribute)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Excute Datasets's Diff Calculation Remotely\n",
"\n",
"<font size=2>Remote execution let you to data compare on more powerful computes - Machine Learning Compute clusters.</font>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare Remote Environment\n",
"### Get Workspace\n",
"<font size=2>\n",
"<br>If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, check the <a href=\"../../../configuration.ipynb\" title=\"Create an Azure Machine Learning service workspace\">configuration notebook</a> first if you haven't already to establish your connection to the AzureML Workspace.\n",
"</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
"\n",
"ws = Workspace.from_config()\n",
"\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep=\"\\n\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Compute Resource For Calculation\n",
"<font size=2>Check if compute resouce exists and create a new one if not.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
"\n",
"existing = False\n",
"del_cmpt = False\n",
"cts = ws.compute_targets\n",
"\n",
"if (ws.DEFAULT_CPU_CLUSTER_NAME in cts and cts[ws.DEFAULT_CPU_CLUSTER_NAME].type == 'AmlCompute'):\n",
" existing = True\n",
" aml_compute = cts[ws.DEFAULT_CPU_CLUSTER_NAME]\n",
" \n",
"if not existing:\n",
" aml_compute = AmlCompute.create(ws,ws.DEFAULT_CPU_CLUSTER_NAME,ws.DEFAULT_CPU_CLUSTER_CONFIGURATION)\n",
" aml_compute.wait_for_completion(show_output=True)\n",
" del_cmpt = True"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Upload Sample Data To Datastore\n",
"\n",
"<font size=2>Upload data files to the blob storage in Azure ML workspace.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Datastore, Dataset\n",
"import azureml.data\n",
"from azureml.data.azure_storage_datastore import AzureFileDatastore, AzureBlobDatastore\n",
"\n",
"remote_data_path ='demo'\n",
"\n",
"dstore = ws.get_default_datastore()\n",
"dstore.upload_files([local_baseline],\n",
" target_path=remote_data_path,\n",
" overwrite=True,\n",
" show_progress=True)\n",
"\n",
"for day in tqdm(range(0, t_days)):\n",
" target_file = os.path.join(local_folder, 'target_{}.csv'.format(day))\n",
" dstore.upload_files([target_file],\n",
" target_path=remote_data_path,\n",
" overwrite=True,\n",
" show_progress=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register DataSets\n",
"\n",
"<font size=2>Create and Register Datasets.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Datastore, Dataset\n",
"dstore = ws.get_default_datastore()\n",
"\n",
"xpath = remote_data_path + '/' + baseline_file\n",
"toregister_baseline = Dataset.from_delimited_files(dstore.path(xpath))\n",
"registered_baseline = toregister_baseline.register(workspace = ws,\n",
" name = 'dataset baseline for diff demo',\n",
" description = 'dataset baseline for diff comparison',\n",
" exist_ok = True,\n",
" update_if_exist = True\n",
" )\n",
"\n",
"registered_targets = {}\n",
"for day in tqdm(range(0, t_days)):\n",
" target_file = 'target_{}.csv'.format(day)\n",
" toregister_target = Dataset.from_delimited_files(dstore.path(remote_data_path + '/' + target_file))\n",
" registered_target = toregister_target.register(workspace = ws,\n",
" name = 'dataset target-{} for diff demo'.format(day),\n",
" description = 'target target-{} for diff comparison'.format(day),\n",
" exist_ok = True,\n",
" update_if_exist = True\n",
" )\n",
" registered_targets[day] = registered_target"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Calculate Dataset Diff Remotely\n",
"\n",
"<font size=2>Perform the calculation remotely. This may take 20 minutes.</font>\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_diffs = {}\n",
"\n",
"r_columns = set()\n",
"r_measurements = set()\n",
"\n",
"for day, registered_target in registered_targets.items():\n",
" dt = (start_date + timedelta(days=day)).strftime(\"%Y-%m-%d\")\n",
" remote_diff = registered_baseline.diff(registered_target, compute_target=ws.DEFAULT_CPU_CLUSTER_NAME)\n",
" remote_diff.wait_for_completion()\n",
" \n",
" remote_diffs[dt] = remote_diff.get_result()\n",
" \n",
" for r in remote_diff.get_result():\n",
" if r.name not in r_measurements:\n",
" r_measurements.add(r.name)\n",
" if \"column_name\" in r.extended_properties and r.extended_properties[\"column_name\"] not in r_columns:\n",
" r_columns.add(r.extended_properties[\"column_name\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Parse And Present Remote Execution Results\n",
"\n",
"### Parse And List Column Level Diff Results\n",
"\n",
"<font size=2>Here will iteratively list all details per each measurement per column calculated.</font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pandas import DataFrame\n",
"\n",
"r_dates = []\n",
"r_drift_metrics = {}\n",
"r_drift_contributions = {}\n",
"r_summary_contribute = {}\n",
"r_bottoms_contribute = []\n",
"\n",
"for dt, rst in remote_diffs.items():\n",
" r_dates.append(dt)\n",
" print(\"\\n---------------------------------------- Result of {} ----------------------------------------\".format(dt))\n",
" \n",
" daily_result, drift, daily_contribution = parse_result(rst, r_columns, r_measurements)\n",
" r_drift_metrics[dt] = drift\n",
" r_drift_contributions[dt] = daily_contribution\n",
"\n",
" sum_contribution = 0\n",
" r_bottoms_contribute.append(0)\n",
" for col, val in daily_contribution.items():\n",
" sum_contribution += val\n",
" r_summary_contribute[dt] = sum_contribution\n",
"\n",
" \n",
" display.display(pd.DataFrame(daily_result))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Present Dataset Level Diff (aka drift) In Graphs\n",
"\n",
"<font size=2><font size=2>The left graph presents dataset level difference for all compared baseline-target pairs, the right graph presents dataset level difference contribution for each column so that we know which column impacts more.</font></font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"show_diff(r_drift_metrics, r_dates, r_columns, r_drift_contributions, r_summary_contribute, r_bottoms_contribute)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Clean Resources Created"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if del_cmpt == True:\n",
" try:\n",
" aml_compute.delete()\n",
" aml_compute.wait_for_completion()\n",
" except Exception as e:\n",
" if 'ComputeTargetNotFound' in e.message:\n",
" print(\"Compute target deleted.\")\n",
" del_cmpt = False"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Reference\n",
"\n",
"<font size=2>Detailed description of Dataset Diff attribute can be found at</font><br>\n",
"https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.dataset(class)?view=azure-ml-py#diff-rhs-dataset--compute-target-none--columns-none-"
]
}
],
"metadata": {
"authors": [
{
"name": "davx"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
},
"notice": "Copyright (c) Microsoft Corporation. All rights reserved. Licensed under the MIT License."
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -713,4 +713,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
}
}

View File

@@ -0,0 +1,620 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/work-with-data/datasets/datasets-tutorial/train-with-datasets.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train with Azure Machine Learning Datasets\n",
"Datasets are categorized into TabularDataset and FileDataset based on how users consume them in training. \n",
"* A TabularDataset represents data in a tabular format by parsing the provided file or list of files. TabularDataset can be created from csv, tsv, parquet files, SQL query results etc. For the complete list, please visit our [documentation](https://aka.ms/tabulardataset-api-reference). It provides you with the ability to materialize the data into a pandas DataFrame.\n",
"* A FileDataset references single or multiple files in your datastores or public urls. This provides you with the ability to download or mount the files to your compute. The files can be of any format, which enables a wider range of machine learning scenarios including deep learning.\n",
"\n",
"In this tutorial, you will learn how to train with Azure Machine Learning Datasets:\n",
"\n",
"&#x2611; Use Datasets directly in your training script\n",
"\n",
"&#x2611; Use Datasets to mount files to a remote compute"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) first if you haven't already established your connection to the AzureML Workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print('SDK version:', azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Experiment\n",
"\n",
"**Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"experiment_name = 'train-with-datasets'\n",
"\n",
"from azureml.core import Experiment\n",
"exp = Experiment(workspace=ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing compute resource\n",
"By using Azure Machine Learning Compute, a managed service, data scientists can train machine learning models on clusters of Azure virtual machines. Examples include VMs with GPU support. In this tutorial, you create Azure Machine Learning Compute as your training environment. The code below creates the compute clusters for you if they don't already exist in your workspace.\n",
"\n",
"**Creation of compute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace the code will skip the creation process."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"import os\n",
"\n",
"# choose a name for your cluster\n",
"compute_name = os.environ.get('AML_COMPUTE_CLUSTER_NAME', 'cpu-cluster')\n",
"compute_min_nodes = os.environ.get('AML_COMPUTE_CLUSTER_MIN_NODES', 0)\n",
"compute_max_nodes = os.environ.get('AML_COMPUTE_CLUSTER_MAX_NODES', 4)\n",
"\n",
"# This example uses CPU VM. For using GPU VM, set SKU to STANDARD_NC6\n",
"vm_size = os.environ.get('AML_COMPUTE_CLUSTER_SKU', 'STANDARD_D2_V2')\n",
"\n",
"\n",
"if compute_name in ws.compute_targets:\n",
" compute_target = ws.compute_targets[compute_name]\n",
" if compute_target and type(compute_target) is AmlCompute:\n",
" print('found compute target. just use it. ' + compute_name)\n",
"else:\n",
" print('creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size=vm_size,\n",
" min_nodes=compute_min_nodes, \n",
" max_nodes=compute_max_nodes)\n",
"\n",
" # create the cluster\n",
" compute_target = ComputeTarget.create(ws, compute_name, provisioning_config)\n",
" \n",
" # can poll for a minimum number of nodes and for a specific timeout. \n",
" # if no min node count is provided it will use the scale settings for the cluster\n",
" compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)\n",
" \n",
" # For a more detailed view of current AmlCompute status, use get_status()\n",
" print(compute_target.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You now have the necessary packages and compute resources to train a model in the cloud.\n",
"## Use Datasets directly in training\n",
"\n",
"### Create a TabularDataset\n",
"By creating a dataset, you create a reference to the data source location. If you applied any subsetting transformations to the dataset, they will be stored in the dataset as well. The data remains in its existing location, so no extra storage cost is incurred. \n",
"\n",
"Every workspace comes with a default [datastore](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-access-data) (and you can register more) which is backed by the Azure blob storage account associated with the workspace. We can use it to transfer data from local to the cloud, and create Dataset from it.We will now upload the [Titanic data](./train-dataset/Titanic.csv) to the default datastore (blob) within your workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"datastore = ws.get_default_datastore()\n",
"datastore.upload_files(files = ['./train-dataset/Titanic.csv'],\n",
" target_path = 'train-dataset/tabular/',\n",
" overwrite = True,\n",
" show_progress = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then we will create an unregistered TabularDataset pointing to the path in the datastore. You can also create a Dataset from multiple paths. [learn more](https://aka.ms/azureml/howto/createdatasets) "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Dataset\n",
"dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, 'train-dataset/tabular/Titanic.csv')])\n",
"\n",
"# preview the first 3 rows of the dataset\n",
"dataset.take(3).to_pandas_dataframe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a training script\n",
"\n",
"To submit the job to the cluster, first create a training script. Run the following code to create the training script called `train_titanic.py` in the script_folder. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"script_folder = os.path.join(os.getcwd(), 'train-dataset')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $script_folder/train_titanic.py\n",
"\n",
"import os\n",
"\n",
"from azureml.core import Dataset, Run\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.externals import joblib\n",
"\n",
"run = Run.get_context()\n",
"# get input dataset by name\n",
"dataset = run.input_datasets['titanic']\n",
"\n",
"df = dataset.to_pandas_dataframe()\n",
"\n",
"x_col = ['Pclass', 'Sex', 'SibSp', 'Parch']\n",
"y_col = ['Survived']\n",
"x_df = df.loc[:, x_col]\n",
"y_df = df.loc[:, y_col]\n",
"\n",
"x_train, x_test, y_train, y_test = train_test_split(x_df, y_df, test_size=0.2, random_state=223)\n",
"\n",
"data = {'train': {'X': x_train, 'y': y_train},\n",
"\n",
" 'test': {'X': x_test, 'y': y_test}}\n",
"\n",
"clf = DecisionTreeClassifier().fit(data['train']['X'], data['train']['y'])\n",
"model_file_name = 'decision_tree.pkl'\n",
"\n",
"print('Accuracy of Decision Tree classifier on training set: {:.2f}'.format(clf.score(x_train, y_train)))\n",
"print('Accuracy of Decision Tree classifier on test set: {:.2f}'.format(clf.score(x_test, y_test)))\n",
"\n",
"os.makedirs('./outputs', exist_ok=True)\n",
"with open(model_file_name, 'wb') as file:\n",
" joblib.dump(value=clf, filename='outputs/' + model_file_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure and use Datasets as the input to Estimator"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can ask the system to build a conda environment based on your dependency specification. Once the environment is built, and if you don't change your dependencies, it will be reused in subsequent runs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Environment\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"conda_env = Environment('conda-env')\n",
"conda_env.python.conda_dependencies = CondaDependencies.create(pip_packages=['azureml-sdk','azureml-dataprep[pandas,fuse]>=1.1.','scikit-learn'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"An estimator object is used to submit the run. Azure Machine Learning has pre-configured estimators for common machine learning frameworks, as well as generic Estimator. Create a generic estimator for by specifying\n",
"\n",
"* The name of the estimator object, `est`\n",
"* The directory that contains your scripts. All the files in this directory are uploaded into the cluster nodes for execution. \n",
"* The training script name, train_titanic.py\n",
"* The input Dataset for training\n",
"* The compute target. In this case you will use the AmlCompute you created\n",
"* The environment definition for the experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.estimator import Estimator\n",
"\n",
"est = Estimator(source_directory=script_folder, \n",
" entry_script='train_titanic.py', \n",
" # pass dataset object as an input with name 'titanic'\n",
" inputs=[dataset.as_named_input('titanic')],\n",
" compute_target=compute_target,\n",
" environment_definition= conda_env) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit job to run\n",
"Submit the estimator to the Azure ML experiment to kick off the execution."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run = exp.submit(est)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"\n",
"# monitor the run\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use Datasets to mount files to a remote compute\n",
"\n",
"You can use the Dataset object to mount or download files referred by it. When you mount a file system, you attach that file system to a directory (mount point) and make it available to the system. Because mounting load files at the time of processing, it is usually faster than download.<br> \n",
"Note: mounting is only available for Linux-based compute (DSVM/VM, AMLCompute, HDInsights)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Upload data files into datastore\n",
"We will first load diabetes data from `scikit-learn` to the train-dataset folder."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import load_diabetes\n",
"import numpy as np\n",
"\n",
"training_data = load_diabetes()\n",
"np.save(file='train-dataset/features.npy', arr=training_data['data'])\n",
"np.save(file='train-dataset/labels.npy', arr=training_data['target'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's upload the 2 files into the default datastore under a path named `diabetes`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"datastore.upload_files(['train-dataset/features.npy', 'train-dataset/labels.npy'], target_path='diabetes', overwrite=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a FileDataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.dataset import Dataset\n",
"\n",
"dataset = Dataset.File.from_files(path = [(datastore, 'diabetes/')])\n",
"\n",
"# see a list of files referenced by dataset\n",
"dataset.to_path()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a training script\n",
"\n",
"To submit the job to the cluster, first create a training script. Run the following code to create the training script called `train_diabetes.py` in the script_folder. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $script_folder/train_diabetes.py\n",
"\n",
"import os\n",
"import glob\n",
"\n",
"from sklearn.linear_model import Ridge\n",
"from sklearn.metrics import mean_squared_error\n",
"from sklearn.model_selection import train_test_split\n",
"from azureml.core.run import Run\n",
"from sklearn.externals import joblib\n",
"\n",
"import numpy as np\n",
"\n",
"os.makedirs('./outputs', exist_ok=True)\n",
"\n",
"run = Run.get_context()\n",
"base_path = run.input_datasets['diabetes']\n",
"\n",
"X = np.load(glob.glob(os.path.join(base_path, '**/features.npy'), recursive=True)[0])\n",
"y = np.load(glob.glob(os.path.join(base_path, '**/labels.npy'), recursive=True)[0])\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(\n",
" X, y, test_size=0.2, random_state=0)\n",
"data = {'train': {'X': X_train, 'y': y_train},\n",
" 'test': {'X': X_test, 'y': y_test}}\n",
"\n",
"# list of numbers from 0.0 to 1.0 with a 0.05 interval\n",
"alphas = np.arange(0.0, 1.0, 0.05)\n",
"\n",
"for alpha in alphas:\n",
" # use Ridge algorithm to create a regression model\n",
" reg = Ridge(alpha=alpha)\n",
" reg.fit(data['train']['X'], data['train']['y'])\n",
"\n",
" preds = reg.predict(data['test']['X'])\n",
" mse = mean_squared_error(preds, data['test']['y'])\n",
" run.log('alpha', alpha)\n",
" run.log('mse', mse)\n",
"\n",
" model_file_name = 'ridge_{0:.2f}.pkl'.format(alpha)\n",
" with open(model_file_name, 'wb') as file:\n",
" joblib.dump(value=reg, filename='outputs/' + model_file_name)\n",
"\n",
" print('alpha is {0:.2f}, and mse is {1:0.2f}'.format(alpha, mse))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure & Run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import ScriptRunConfig\n",
"\n",
"src = ScriptRunConfig(source_directory=script_folder, \n",
" script='train_diabetes.py', \n",
" # to mount the dataset on the remote compute and pass the mounted path as an argument to the training script\n",
" arguments =[dataset.as_named_input('diabetes').as_mount('tmp/dataset')])\n",
"\n",
"src.run_config.framework = 'python'\n",
"src.run_config.environment = conda_env\n",
"src.run_config.target = compute_target.name"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run = exp.submit(config=src)\n",
"\n",
"# monitor the run\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Display run results\n",
"You now have a model trained on a remote cluster. Retrieve all the metrics logged during the run, including the accuracy of the model:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(run.get_metrics())\n",
"metrics = run.get_metrics()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register Datasets\n",
"Use the register() method to register datasets to your workspace so they can be shared with others, reused across various experiments, and referred to by name in your training script."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset = dataset.register(workspace = ws,\n",
" name = 'diabetes dataset',\n",
" description='training dataset',\n",
" create_new_version=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register models with Datasets\n",
"The last step in the training script wrote the model files in a directory named `outputs` in the VM of the cluster where the job is executed. `outputs` is a special directory in that all content in this directory is automatically uploaded to your workspace. This content appears in the run record in the experiment under your workspace. Hence, the model file is now also available in your workspace.\n",
"\n",
"You can register models with Datasets for reproducibility and auditing purpose."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# find the index where MSE is the smallest\n",
"indices = list(range(0, len(metrics['mse'])))\n",
"min_mse_index = min(indices, key=lambda x: metrics['mse'][x])\n",
"\n",
"print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format(\n",
" metrics['mse'][min_mse_index], \n",
" metrics['alpha'][min_mse_index]\n",
"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# find the best model\n",
"best_alpha = metrics['alpha'][min_mse_index]\n",
"model_file_name = 'ridge_{0:.2f}.pkl'.format(best_alpha)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# register the best model with the input dataset\n",
"model = run.register_model(model_name='sklearn_diabetes', model_path=os.path.join('outputs', model_file_name),\n",
" datasets =[('training data',dataset)])"
]
}
],
"metadata": {
"authors": [
{
"name": "sihhu"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

656
index.md
View File

@@ -16,6 +16,8 @@ Machine Learning notebook samples and encourage efficient retrieval of topics an
|Title| Task | Dataset | Training Compute | Deployment Target | ML Framework | Tags |
|:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|:------------:|
| :star:[Use pipelines for batch scoring](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/tutorial-pipeline-batch-scoring-classification.ipynb) | Batch scoring | None | AmlCompute | Published pipeline | Azure ML Pipelines | None |
## Training
@@ -35,158 +37,504 @@ Machine Learning notebook samples and encourage efficient retrieval of topics an
## Other Notebooks
|Title| Task | Dataset | Training Compute | Deployment Target | ML Framework | Tags |
|:----|:-----|:-------:|:----------------:|:-----------------:|:------------:|:------------:|
| [Logging APIs](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/track-and-monitor-experiments/logging-api/logging-api.ipynb) | Logging APIs and analyzing results | None | None | None | None | None |
| [configuration](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azuremlconfiguration.ipynb) | | | | | | |
| [azure-ml-with-nvidia-rapids](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/contrib/RAPIDS/azure-ml-with-nvidia-rapids.ipynb) | | | | | | |
| [auto-ml-classification](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification/auto-ml-classification.ipynb) | | | | | | |
| [auto-ml-classification-bank-marketing](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-bank-marketing/auto-ml-classification-bank-marketing.ipynb) | | | | | | |
| [auto-ml-classification-credit-card-fraud](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb) | | | | | | |
| [auto-ml-classification-with-deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-with-deployment/auto-ml-classification-with-deployment.ipynb) | | | | | | |
| [auto-ml-classification-with-onnx](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-with-onnx/auto-ml-classification-with-onnx.ipynb) | | | | | | |
| [auto-ml-classification-with-whitelisting](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-with-whitelisting/auto-ml-classification-with-whitelisting.ipynb) | | | | | | |
| [auto-ml-dataset](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/dataset/auto-ml-dataset.ipynb) | | | | | | |
| [auto-ml-dataset-remote-execution](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/dataset-remote-execution/auto-ml-dataset-remote-execution.ipynb) | | | | | | |
| [auto-ml-exploring-previous-runs](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/exploring-previous-runs/auto-ml-exploring-previous-runs.ipynb) | | | | | | |
| [auto-ml-forecasting-bike-share](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb) | | | | | | |
| [auto-ml-forecasting-energy-demand](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb) | | | | | | |
| [auto-ml-forecasting-orange-juice-sales](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb) | | | | | | |
| [auto-ml-missing-data-blacklist-early-termination](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/missing-data-blacklist-early-termination/auto-ml-missing-data-blacklist-early-termination.ipynb) | | | | | | |
| [auto-ml-model-explanation](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/model-explanation/auto-ml-model-explanation.ipynb) | | | | | | |
| [auto-ml-regression](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/regression/auto-ml-regression.ipynb) | | | | | | |
| [auto-ml-regression-concrete-strength](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/regression-concrete-strength/auto-ml-regression-concrete-strength.ipynb) | | | | | | |
| [auto-ml-regression-hardware-performance](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/regression-hardware-performance/auto-ml-regression-hardware-performance.ipynb) | | | | | | |
| [auto-ml-remote-amlcompute](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/remote-amlcompute/auto-ml-remote-amlcompute.ipynb) | | | | | | |
| [auto-ml-remote-amlcompute-with-onnx](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/remote-amlcompute-with-onnx/auto-ml-remote-amlcompute-with-onnx.ipynb) | | | | | | |
| [auto-ml-sample-weight](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/sample-weight/auto-ml-sample-weight.ipynb) | | | | | | |
| [auto-ml-sparse-data-train-test-split](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/sparse-data-train-test-split/auto-ml-sparse-data-train-test-split.ipynb) | | | | | | |
| [auto-ml-sql-energy-demand](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/sql-server/energy-demand/auto-ml-sql-energy-demand.ipynb) | | | | | | |
| [auto-ml-sql-setup](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/sql-server/setup/auto-ml-sql-setup.ipynb) | | | | | | |
| [auto-ml-subsampling-local](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/subsampling/auto-ml-subsampling-local.ipynb) | | | | | | |
| [build-model-run-history-03](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-databricks/amlsdk/build-model-run-history-03.ipynb) | | | | | | |
| [deploy-to-aci-04](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-databricks/amlsdk/deploy-to-aci-04.ipynb) | | | | | | |
| [deploy-to-aks-existingimage-05](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-databricks/amlsdk/deploy-to-aks-existingimage-05.ipynb) | | | | | | |
| [ingest-data-02](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-databricks/amlsdk/ingest-data-02.ipynb) | | | | | | |
| [installation-and-configuration-01](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-databricks/amlsdk/installation-and-configuration-01.ipynb) | | | | | | |
| [automl-databricks-local-01](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-databricks/automl/automl-databricks-local-01.ipynb) | | | | | | |
| [automl-databricks-local-with-deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-databricks/automl/automl-databricks-local-with-deployment.ipynb) | | | | | | |
| [aml-pipelines-use-databricks-as-compute-target](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-databricks/databricks-as-remote-compute-target/aml-pipelines-use-databricks-as-compute-target.ipynb) | | | | | | |
| [automl_hdi_local_classification](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-hdi/automl_hdi_local_classification.ipynb) | | | | | | |
| [model-register-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deploy-to-cloud/model-register-and-deploy.ipynb) | | | | | | |
| [register-model-deploy-local-advanced](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deploy-to-local/register-model-deploy-local-advanced.ipynb) | | | | | | |
| [register-model-deploy-local](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deploy-to-local/register-model-deploy-local.ipynb) | | | | | | |
| [accelerated-models-object-detection](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/accelerated-models/accelerated-models-object-detection.ipynb) | | | | | | |
| [accelerated-models-quickstart](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/accelerated-models/accelerated-models-quickstart.ipynb) | | | | | | |
| [accelerated-models-training](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/accelerated-models/accelerated-models-training.ipynb) | | | | | | |
| [model-register-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/deploy-to-cloud/model-register-and-deploy.ipynb) | | | | | | |
| [register-model-deploy-local-advanced](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/deploy-to-local/register-model-deploy-local-advanced.ipynb) | | | | | | |
| [register-model-deploy-local](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/deploy-to-local/register-model-deploy-local.ipynb) | | | | | | |
| [enable-app-insights-in-production-service](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb) | | | | | | |
| [enable-data-collection-for-models-in-aks](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/enable-data-collection-for-models-in-aks/enable-data-collection-for-models-in-aks.ipynb) | | | | | | |
| [onnx-convert-aml-deploy-tinyyolo](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-convert-aml-deploy-tinyyolo.ipynb) | | | | | | |
| [onnx-inference-facial-expression-recognition-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-inference-facial-expression-recognition-deploy.ipynb) | | | | | | |
| [onnx-inference-mnist-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-inference-mnist-deploy.ipynb) | | | | | | |
| [onnx-modelzoo-aml-deploy-resnet50](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-modelzoo-aml-deploy-resnet50.ipynb) | | | | | | |
| [onnx-train-pytorch-aml-deploy-mnist](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-train-pytorch-aml-deploy-mnist.ipynb) | | | | | | |
| [production-deploy-to-aks](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb) | | | | | | |
| [production-deploy-to-aks-gpu](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/production-deploy-to-aks-gpu/production-deploy-to-aks-gpu.ipynb) | | | | | | |
| [register-model-create-image-deploy-service](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb) | | | | | | |
| [explain-model-on-amlcompute](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/explain-model/azure-integration/remote-explanation/explain-model-on-amlcompute.ipynb) | | | | | | |
| [save-retrieve-explanations-run-history](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/explain-model/azure-integration/run-history/save-retrieve-explanations-run-history.ipynb) | | | | | | |
| [train-explain-model-locally-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/explain-model/azure-integration/scoring-time/train-explain-model-locally-and-deploy.ipynb) | | | | | | |
| [train-explain-model-on-amlcompute-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/explain-model/azure-integration/scoring-time/train-explain-model-on-amlcompute-and-deploy.ipynb) | | | | | | |
| [advanced-feature-transformations-explain-local](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/explain-model/tabular-data/advanced-feature-transformations-explain-local.ipynb) | | | | | | |
| [explain-binary-classification-local](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/explain-model/tabular-data/explain-binary-classification-local.ipynb) | | | | | | |
| [explain-multiclass-classification-local](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/explain-model/tabular-data/explain-multiclass-classification-local.ipynb) | | | | | | |
| [explain-regression-local](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/explain-model/tabular-data/explain-regression-local.ipynb) | | | | | | |
| [simple-feature-transformations-explain-local](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/explain-model/tabular-data/simple-feature-transformations-explain-local.ipynb) | | | | | | |
| [aml-pipelines-data-transfer](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-data-transfer.ipynb) | | | | | | |
| [aml-pipelines-getting-started](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-getting-started.ipynb) | | | | | |
| [aml-pipelines-how-to-use-azurebatch-to-run-a-windows-executable](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-azurebatch-to-run-a-windows-executable.ipynb) | | | | | | |
| [aml-pipelines-how-to-use-estimatorstep](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-estimatorstep.ipynb) | | | | | | |
| [aml-pipelines-how-to-use-pipeline-drafts](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-pipeline-drafts.ipynb) | | | | | | |
| [aml-pipelines-parameter-tuning-with-hyperdrive](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-parameter-tuning-with-hyperdrive.ipynb) | | | | | | |
| [aml-pipelines-publish-and-run-using-rest-endpoint](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-publish-and-run-using-rest-endpoint.ipynb) | | | | | | |
| [aml-pipelines-setup-schedule-for-a-published-pipeline](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-setup-schedule-for-a-published-pipeline.ipynb) | | | | | | |
| [aml-pipelines-setup-versioned-pipeline-endpoints](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-setup-versioned-pipeline-endpoints.ipynb) | | | | | | |
| [aml-pipelines-use-adla-as-compute-target](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-use-adla-as-compute-target.ipynb) | | | | | | |
| [aml-pipelines-use-databricks-as-compute-target](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-use-databricks-as-compute-target.ipynb) | | | | | | |
| [aml-pipelines-with-automated-machine-learning-step](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-automated-machine-learning-step.ipynb) | | | | | | |
| [aml-pipelines-with-data-dependency-steps](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-data-dependency-steps.ipynb) | | | | | | |
| [nyc-taxi-data-regression-model-building](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/nyc-taxi-data-regression-model-building/nyc-taxi-data-regression-model-building.ipynb) | | | | | | |
| [pipeline-batch-scoring](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/pipeline-batch-scoring/pipeline-batch-scoring.ipynb) | | | | | | |
| [pipeline-style-transfer](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/pipeline-style-transfer/pipeline-style-transfer.ipynb) | | | | | | |
| [authentication-in-azureml](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/manage-azureml-service/authentication-in-azureml/authentication-in-azureml.ipynb) | | | | | | |
| [azure-ml-datadrift](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/monitor-models/data-drift/azure-ml-datadrift.ipynb) | | | | | | |
| [manage-runs](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/track-and-monitor-experiments/manage-runs/manage-runs.ipynb) | | | | | | |
| [tensorboard](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/track-and-monitor-experiments/tensorboard/tensorboard.ipynb) | | | | | | |
| [deploy-model](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml//track-and-monitor-experiments/using-mlflow/deploy-model/deploy-model.ipynb) | | | | | | |
| [train-and-deploy-pytorch](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-deploy-pytorch/train-and-deploy-pytorch.ipynb) | | | | | | |
| [train-local](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-local/train-local.ipynb) | | | | | | |
| [train-remote](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-remote/train-remote.ipynb) | | | | | | |
| [logging-api](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/logging-api/logging-api.ipynb) | | | | | | |
| [manage-runs](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/manage-runs/manage-runs.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-sklearn](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-hyperparameter-tune-deploy-with-sklearn/train-hyperparameter-tune-deploy-with-sklearn.ipynb) | | | | | | |
| [train-in-spark](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-in-spark/train-in-spark.ipynb) | | | | | | |
| [train-on-amlcompute](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb) | | | | | | |
| [train-on-local](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-on-local/train-on-local.ipynb) | | | | | | |
| [train-on-remote-vm](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb) | | | | | | |
| [train-within-notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb) | | | | | | |
| [using-environments](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/using-environments/using-environments.ipynb) | | | | | | |
| [distributed-chainer](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/distributed-chainer/distributed-chainer.ipynb) | | | | | | |
| [distributed-cntk-with-custom-docker](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/distributed-cntk-with-custom-docker/distributed-cntk-with-custom-docker.ipynb) | | | | | | |
| [distributed-pytorch-with-horovod](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb) | | | | | | |
| [distributed-tensorflow-with-horovod](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/distributed-tensorflow-with-horovod/distributed-tensorflow-with-horovod.ipynb) | | | | | | |
| [distributed-tensorflow-with-parameter-server](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/distributed-tensorflow-with-parameter-server/distributed-tensorflow-with-parameter-server.ipynb) | | | | | | |
| [export-run-history-to-tensorboard](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/export-run-history-to-tensorboard/export-run-history-to-tensorboard.ipynb) | | | | | | |
| [how-to-use-estimator](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/how-to-use-estimator/how-to-use-estimator.ipynb) | | | | | | |
| [notebook_example](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/how-to-use-estimator/notebook_example.ipynb) | | | | | | |
| [tensorboard](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/tensorboard/tensorboard.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-chainer](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-chainer/train-hyperparameter-tune-deploy-with-chainer.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-keras](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-keras/train-hyperparameter-tune-deploy-with-keras.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-pytorch](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-tensorflow](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) | | | | | | |
| [train-tensorflow-resume-training](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/train-tensorflow-resume-training/train-tensorflow-resume-training.ipynb) | | | | | | |
| [new-york-taxi](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/case-studies/new-york-taxi/new-york-taxi.ipynb) | | | | | | |
| [new-york-taxi_scale-out](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/case-studies/new-york-taxi/new-york-taxi_scale-out.ipynb) | | | | | | |
| [add-column-using-expression](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/add-column-using-expression.ipynb) | | | | | | |
| [append-columns-and-rows](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/append-columns-and-rows.ipynb) | | | | | | |
| [assertions](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/assertions.ipynb) | | | | | | |
| [auto-read-file](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/auto-read-file.ipynb) | | | | | | |
| [cache](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/cache.ipynb) | | | | | | |
| [column-manipulations](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/column-manipulations.ipynb) | | | | | | |
| [column-type-transforms](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/column-type-transforms.ipynb) | | | | | | |
| [custom-python-transforms](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/custom-python-transforms.ipynb) | | | | | | |
| [data-ingestion](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/data-ingestion.ipynb) | | | | | | |
| [data-profile](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/data-profile.ipynb) | | | | | | |
| [datastore](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/datastore.ipynb) | | | | | | |
| [derive-column-by-example](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/derive-column-by-example.ipynb) | | | | | | |
| [external-references](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/external-references.ipynb) | | | | | | |
| [filtering](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/filtering.ipynb) | | | | | | |
| [fuzzy-group](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/fuzzy-group.ipynb) | | | | | | |
| [impute-missing-values](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/impute-missing-values.ipynb) | | | | | | |
| [join](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/join.ipynb) | | | | | | |
| [label-encoder](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/label-encoder.ipynb) | | | | | | |
| [min-max-scaler](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/min-max-scaler.ipynb) | | | | | | |
| [one-hot-encoder](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/one-hot-encoder.ipynb) | | | | | | |
| [open-save-dataflows](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/open-save-dataflows.ipynb) | | | | | | |
| [quantile-transformation](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/quantile-transformation.ipynb) | | | | | | |
| [random-split](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/random-split.ipynb) | | | | | | |
| [replace-datasource-replace-reference](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/replace-datasource-replace-reference.ipynb) | | | | | | |
| [replace-fill-error](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/replace-fill-error.ipynb) | | | | | | |
| [secrets](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/secrets.ipynb) | | | | | | |
| [semantic-types](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/semantic-types.ipynb) | | | | | | |
| [split-column-by-example](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/split-column-by-example.ipynb) | | | | | | |
| [subsetting-sampling](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/subsetting-sampling.ipynb) | | | | | | |
| [summarize](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/summarize.ipynb) | | | | | | |
| [working-with-file-streams](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/working-with-file-streams.ipynb) | | | | | | |
| [writing-data](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/how-to-guides/writing-data.ipynb) | | | | | | |
| [getting-started](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/dataprep/tutorials/getting-started/getting-started.ipynb) | | | | | | |
| [datasets-diff](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datasets/datasets-diff/datasets-diff.ipynb) | | | | | | |
| [file-dataset-img-classification](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datasets/datasets-tutorial/file-dataset-img-classification.ipynb) | | | | | | |
| [tabular-dataset-tutorial](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datasets/datasets-tutorial/tabular-dataset-tutorial.ipynb) | | | | | | |
| [configuration](https://github.com/Azure/MachineLearningNotebooks/blob/master/setup-environment/configuration.ipynb) | | | | | | |
| [img-classification-part1-training](https://github.com/Azure/MachineLearningNotebooks/blob/master/tutorials/img-classification-part1-training.ipynb) | | | | | | |
| [img-classification-part2-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master/tutorials/img-classification-part2-deploy.ipynb) | | | | | | |
| [regression-automated-ml](https://github.com/Azure/MachineLearningNotebooks/blob/master/tutorials/regression-automated-ml.ipynb) | | | | | | |
| [tutorial-1st-experiment-sdk-train](https://github.com/Azure/MachineLearningNotebooks/blob/master/tutorials/tutorial-1st-experiment-sdk-train.ipynb) | | | | | | |
| [configuration](https://github.com/Azure/MachineLearningNotebooks/blob/master/configuration.ipynb) | | | | | | |
| [azure-ml-with-nvidia-rapids](https://github.com/Azure/MachineLearningNotebooks/blob/master//contrib/RAPIDS/azure-ml-with-nvidia-rapids.ipynb) | | | | | | |
| [auto-ml-classification](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification/auto-ml-classification.ipynb) | | | | | | |
| [auto-ml-classification-bank-marketing](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification-bank-marketing/auto-ml-classification-bank-marketing.ipynb) | | | | | | |
| [auto-ml-classification-credit-card-fraud](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb) | | | | | | |
| [auto-ml-classification-with-deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification-with-deployment/auto-ml-classification-with-deployment.ipynb) | | | | | | |
| [auto-ml-classification-with-onnx](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification-with-onnx/auto-ml-classification-with-onnx.ipynb) | | | | | | |
| [auto-ml-classification-with-whitelisting](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification-with-whitelisting/auto-ml-classification-with-whitelisting.ipynb) | | | | | | |
| [auto-ml-dataset](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/dataset/auto-ml-dataset.ipynb) | | | | | | |
| [auto-ml-dataset-remote-execution](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/dataset-remote-execution/auto-ml-dataset-remote-execution.ipynb) | | | | | | |
| [auto-ml-exploring-previous-runs](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/exploring-previous-runs/auto-ml-exploring-previous-runs.ipynb) | | | | | | |
| [auto-ml-forecasting-bike-share](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb) | | | | | | |
| [auto-ml-forecasting-energy-demand](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb) | | | | | | |
| [auto-ml-forecasting-orange-juice-sales](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb) | | | | | | |
| [auto-ml-missing-data-blacklist-early-termination](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/missing-data-blacklist-early-termination/auto-ml-missing-data-blacklist-early-termination.ipynb) | | | | | | |
| [auto-ml-model-explanation](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/model-explanation/auto-ml-model-explanation.ipynb) | | | | | | |
| [auto-ml-regression](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/regression/auto-ml-regression.ipynb) | | | | | | |
| [auto-ml-regression-concrete-strength](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/regression-concrete-strength/auto-ml-regression-concrete-strength.ipynb) | | | | | | |
| [auto-ml-regression-hardware-performance](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/regression-hardware-performance/auto-ml-regression-hardware-performance.ipynb) | | | | | | |
| [auto-ml-remote-amlcompute](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/remote-amlcompute/auto-ml-remote-amlcompute.ipynb) | | | | | | |
| [auto-ml-remote-amlcompute-with-onnx](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/remote-amlcompute-with-onnx/auto-ml-remote-amlcompute-with-onnx.ipynb) | | | | | | |
| [auto-ml-sample-weight](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/sample-weight/auto-ml-sample-weight.ipynb) | | | | | | |
| [auto-ml-sparse-data-train-test-split](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/sparse-data-train-test-split/auto-ml-sparse-data-train-test-split.ipynb) | | | | | | |
| [auto-ml-sql-energy-demand](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/sql-server/energy-demand/auto-ml-sql-energy-demand.ipynb) | | | | | | |
| [auto-ml-sql-setup](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/sql-server/setup/auto-ml-sql-setup.ipynb) | | | | | | |
| [auto-ml-subsampling-local](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/subsampling/auto-ml-subsampling-local.ipynb) | | | | | | |
| [build-model-run-history-03](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/build-model-run-history-03.ipynb) | | | | | | |
| [deploy-to-aci-04](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/deploy-to-aci-04.ipynb) | | | | | | |
| [deploy-to-aks-existingimage-05](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/deploy-to-aks-existingimage-05.ipynb) | | | | | | |
| [ingest-data-02](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/ingest-data-02.ipynb) | | | | | | |
| [installation-and-configuration-01](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/amlsdk/installation-and-configuration-01.ipynb) | | | | | | |
| [automl-databricks-local-01](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/automl/automl-databricks-local-01.ipynb) | | | | | | |
| [automl-databricks-local-with-deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/automl/automl-databricks-local-with-deployment.ipynb) | | | | | | |
| [aml-pipelines-use-databricks-as-compute-target](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-databricks/databricks-as-remote-compute-target/aml-pipelines-use-databricks-as-compute-target.ipynb) | | | | | | |
| [automl_hdi_local_classification](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/azure-hdi/automl_hdi_local_classification.ipynb) | | | | | | |
| [model-register-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deploy-to-cloud/model-register-and-deploy.ipynb) | | | | | | |
| [register-model-deploy-local-advanced](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deploy-to-local/register-model-deploy-local-advanced.ipynb) | | | | | | |
| [register-model-deploy-local](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deploy-to-local/register-model-deploy-local.ipynb) | | | | | | |
| [accelerated-models-object-detection](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/accelerated-models/accelerated-models-object-detection.ipynb) | | | | | | |
| [accelerated-models-quickstart](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/accelerated-models/accelerated-models-quickstart.ipynb) | | | | | | |
| [accelerated-models-training](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/accelerated-models/accelerated-models-training.ipynb) | | | | | | |
| [model-register-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-to-cloud/model-register-and-deploy.ipynb) | | | | | | |
| [register-model-deploy-local-advanced](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-to-local/register-model-deploy-local-advanced.ipynb) | | | | | | |
| [register-model-deploy-local](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-to-local/register-model-deploy-local.ipynb) | | | | | | |
| [enable-app-insights-in-production-service](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb) | | | | | | |
| [enable-data-collection-for-models-in-aks](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/enable-data-collection-for-models-in-aks/enable-data-collection-for-models-in-aks.ipynb) | | | | | | |
| [onnx-convert-aml-deploy-tinyyolo](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-convert-aml-deploy-tinyyolo.ipynb) | | | | | | |
| [onnx-inference-facial-expression-recognition-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-inference-facial-expression-recognition-deploy.ipynb) | | | | | | |
| [onnx-inference-mnist-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-inference-mnist-deploy.ipynb) | | | | | | |
| [onnx-modelzoo-aml-deploy-resnet50](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-modelzoo-aml-deploy-resnet50.ipynb) | | | | | | |
| [onnx-train-pytorch-aml-deploy-mnist](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/onnx/onnx-train-pytorch-aml-deploy-mnist.ipynb) | | | | | | |
| [production-deploy-to-aks](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb) | | | | | | |
| [production-deploy-to-aks-gpu](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/production-deploy-to-aks-gpu/production-deploy-to-aks-gpu.ipynb) | | | | | | |
| [register-model-create-image-deploy-service](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb) | | | | | | |
| [explain-model-on-amlcompute](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/azure-integration/remote-explanation/explain-model-on-amlcompute.ipynb) | | | | | | |
| [save-retrieve-explanations-run-history](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/azure-integration/run-history/save-retrieve-explanations-run-history.ipynb) | | | | | | |
| [train-explain-model-locally-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/azure-integration/scoring-time/train-explain-model-locally-and-deploy.ipynb) | | | | | | |
| [train-explain-model-on-amlcompute-and-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/azure-integration/scoring-time/train-explain-model-on-amlcompute-and-deploy.ipynb) | | | | | | |
| [advanced-feature-transformations-explain-local](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/tabular-data/advanced-feature-transformations-explain-local.ipynb) | | | | | | |
| [explain-binary-classification-local](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/tabular-data/explain-binary-classification-local.ipynb) | | | | | | |
| [explain-multiclass-classification-local](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/tabular-data/explain-multiclass-classification-local.ipynb) | | | | | | |
| [explain-regression-local](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/tabular-data/explain-regression-local.ipynb) | | | | | | |
| [simple-feature-transformations-explain-local](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/explain-model/tabular-data/simple-feature-transformations-explain-local.ipynb) | | | | | | |
| [aml-pipelines-data-transfer](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-data-transfer.ipynb) | | | | | | |
| [aml-pipelines-getting-started](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-getting-started.ipynb) | | | | | | |
| [aml-pipelines-how-to-use-azurebatch-to-run-a-windows-executable](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-azurebatch-to-run-a-windows-executable.ipynb) | | | | | | |
| [aml-pipelines-how-to-use-estimatorstep](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-estimatorstep.ipynb) | | | | | | |
| [aml-pipelines-how-to-use-pipeline-drafts](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-pipeline-drafts.ipynb) | | | | | | |
| [aml-pipelines-parameter-tuning-with-hyperdrive](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-parameter-tuning-with-hyperdrive.ipynb) | | | | | | |
| [aml-pipelines-publish-and-run-using-rest-endpoint](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-publish-and-run-using-rest-endpoint.ipynb) | | | | | | |
| [aml-pipelines-setup-schedule-for-a-published-pipeline](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-setup-schedule-for-a-published-pipeline.ipynb) | | | | | | |
| [aml-pipelines-setup-versioned-pipeline-endpoints](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-setup-versioned-pipeline-endpoints.ipynb) | | | | | | |
| [aml-pipelines-showcasing-datapath-and-pipelineparameter](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-showcasing-datapath-and-pipelineparameter.ipynb) | | | | | | |
| [aml-pipelines-use-adla-as-compute-target](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-use-adla-as-compute-target.ipynb) | | | | | | |
| [aml-pipelines-use-databricks-as-compute-target](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-use-databricks-as-compute-target.ipynb) | | | | | | |
| [aml-pipelines-with-automated-machine-learning-step](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-automated-machine-learning-step.ipynb) | | | | | | |
| [aml-pipelines-with-data-dependency-steps](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-data-dependency-steps.ipynb) | | | | | | |
| [nyc-taxi-data-regression-model-building](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/nyc-taxi-data-regression-model-building/nyc-taxi-data-regression-model-building.ipynb) | | | | | | |
| [pipeline-batch-scoring](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/pipeline-batch-scoring/pipeline-batch-scoring.ipynb) | | | | | | |
| [pipeline-style-transfer](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/pipeline-style-transfer/pipeline-style-transfer.ipynb) | | | | | | |
| [authentication-in-azureml](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/manage-azureml-service/authentication-in-azureml/authentication-in-azureml.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-chainer](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/chainer/deployment/train-hyperparameter-tune-deploy-with-chainer/train-hyperparameter-tune-deploy-with-chainer.ipynb) | | | | | | |
| [distributed-chainer](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/chainer/training/distributed-chainer/distributed-chainer.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-pytorch](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/pytorch/deployment/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) | | | | | | |
| [distributed-pytorch-with-horovod](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/pytorch/training/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb) | | | | | | |
| [distributed-pytorch-with-nccl-gloo](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/pytorch/training/distributed-pytorch-with-nccl-gloo/distributed-pytorch-with-nccl-gloo.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-sklearn](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/scikit-learn/training/train-hyperparameter-tune-deploy-with-sklearn/train-hyperparameter-tune-deploy-with-sklearn.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-tensorflow](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/deployment/train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) | | | | | | |
| [distributed-tensorflow-with-horovod](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/training/distributed-tensorflow-with-horovod/distributed-tensorflow-with-horovod.ipynb) | | | | | | |
| [distributed-tensorflow-with-parameter-server](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/training/distributed-tensorflow-with-parameter-server/distributed-tensorflow-with-parameter-server.ipynb) | | | | | | |
| [train-tensorflow-resume-training](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/training/train-tensorflow-resume-training/train-tensorflow-resume-training.ipynb) | | | | | | |
| [azure-ml-datadrift](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/monitor-models/data-drift/azure-ml-datadrift.ipynb) | | | | | | |
| [Logging APIs](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/logging-api/logging-api.ipynb) | Logging APIs and analyzing results | | None | None | None | None |
| [manage-runs](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/manage-runs/manage-runs.ipynb) | | | | | | |
| [tensorboard](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/tensorboard/tensorboard.ipynb) | | | | | | |
| [deploy-model](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/using-mlflow/deploy-model/deploy-model.ipynb) | | | | | | |
| [train-and-deploy-pytorch](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-deploy-pytorch/train-and-deploy-pytorch.ipynb) | | | | | | |
| [train-local](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-local/train-local.ipynb) | | | | | | |
| [train-remote](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-remote/train-remote.ipynb) | | | | | | |
| [logging-api](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/logging-api/logging-api.ipynb) | | | | | | |
| [manage-runs](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/manage-runs/manage-runs.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-sklearn](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-hyperparameter-tune-deploy-with-sklearn/train-hyperparameter-tune-deploy-with-sklearn.ipynb) | | | | | | |
| [train-in-spark](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-in-spark/train-in-spark.ipynb) | | | | | | |
| [train-on-amlcompute](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb) | | | | | | |
| [train-on-local](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-on-local/train-on-local.ipynb) | | | | | | |
| [train-on-remote-vm](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb) | | | | | | |
| [train-within-notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb) | | | | | | |
| [using-environments](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/using-environments/using-environments.ipynb) | | | | | | |
| [distributed-chainer](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/distributed-chainer/distributed-chainer.ipynb) | | | | | | |
| [distributed-cntk-with-custom-docker](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/distributed-cntk-with-custom-docker/distributed-cntk-with-custom-docker.ipynb) | | | | | | |
| [distributed-pytorch-with-horovod](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb) | | | | | | |
| [distributed-tensorflow-with-horovod](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/distributed-tensorflow-with-horovod/distributed-tensorflow-with-horovod.ipynb) | | | | | | |
| [distributed-tensorflow-with-parameter-server](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/distributed-tensorflow-with-parameter-server/distributed-tensorflow-with-parameter-server.ipynb) | | | | | | |
| [export-run-history-to-tensorboard](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/export-run-history-to-tensorboard/export-run-history-to-tensorboard.ipynb) | | | | | | |
| [how-to-use-estimator](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/how-to-use-estimator/how-to-use-estimator.ipynb) | | | | | | |
| [notebook_example](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/how-to-use-estimator/notebook_example.ipynb) | | | | | | |
| [tensorboard](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/tensorboard/tensorboard.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-chainer](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-chainer/train-hyperparameter-tune-deploy-with-chainer.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-keras](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-keras/train-hyperparameter-tune-deploy-with-keras.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-pytorch](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) | | | | | | |
| [train-hyperparameter-tune-deploy-with-tensorflow](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) | | | | | | |
| [train-tensorflow-resume-training](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training-with-deep-learning/train-tensorflow-resume-training/train-tensorflow-resume-training.ipynb) | | | | | | |
| [new-york-taxi](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/case-studies/new-york-taxi/new-york-taxi.ipynb) | | | | | | |
| [new-york-taxi_scale-out](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/case-studies/new-york-taxi/new-york-taxi_scale-out.ipynb) | | | | | | |
| [add-column-using-expression](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/add-column-using-expression.ipynb) | | | | | | |
| [append-columns-and-rows](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/append-columns-and-rows.ipynb) | | | | | | |
| [assertions](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/assertions.ipynb) | | | | | | |
| [auto-read-file](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/auto-read-file.ipynb) | | | | | | |
| [cache](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/cache.ipynb) | | | | | | |
| [column-manipulations](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/column-manipulations.ipynb) | | | | | | |
| [column-type-transforms](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/column-type-transforms.ipynb) | | | | | | |
| [custom-python-transforms](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/custom-python-transforms.ipynb) | | | | | | |
| [data-ingestion](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/data-ingestion.ipynb) | | | | | | |
| [data-profile](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/data-profile.ipynb) | | | | | | |
| [datastore](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/datastore.ipynb) | | | | | | |
| [derive-column-by-example](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/derive-column-by-example.ipynb) | | | | | | |
| [external-references](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/external-references.ipynb) | | | | | | |
| [filtering](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/filtering.ipynb) | | | | | | |
| [fuzzy-group](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/fuzzy-group.ipynb) | | | | | | |
| [impute-missing-values](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/impute-missing-values.ipynb) | | | | | | |
| [join](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/join.ipynb) | | | | | | |
| [label-encoder](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/label-encoder.ipynb) | | | | | | |
| [min-max-scaler](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/min-max-scaler.ipynb) | | | | | | |
| [one-hot-encoder](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/one-hot-encoder.ipynb) | | | | | | |
| [open-save-dataflows](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/open-save-dataflows.ipynb) | | | | | | |
| [quantile-transformation](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/quantile-transformation.ipynb) | | | | | | |
| [random-split](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/random-split.ipynb) | | | | | | |
| [replace-datasource-replace-reference](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/replace-datasource-replace-reference.ipynb) | | | | | | |
| [replace-fill-error](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/replace-fill-error.ipynb) | | | | | | |
| [secrets](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/secrets.ipynb) | | | | | | |
| [semantic-types](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/semantic-types.ipynb) | | | | | | |
| [split-column-by-example](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/split-column-by-example.ipynb) | | | | | | |
| [subsetting-sampling](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/subsetting-sampling.ipynb) | | | | | | |
| [summarize](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/summarize.ipynb) | | | | | | |
| [working-with-file-streams](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/working-with-file-streams.ipynb) | | | | | | |
| [writing-data](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/how-to-guides/writing-data.ipynb) | | | | | | |
| [getting-started](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/dataprep/tutorials/getting-started/getting-started.ipynb) | | | | | | |
| [datasets-diff](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets/datasets-diff/datasets-diff.ipynb) | | | | | | |
| [file-dataset-img-classification](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets/datasets-tutorial/file-dataset-img-classification.ipynb) | | | | | | |
| [tabular-dataset-tutorial](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets/datasets-tutorial/tabular-dataset-tutorial.ipynb) | | | | | | |
| [tabular-timeseries-dataset-filtering](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets/datasets-tutorial/tabular-timeseries-dataset-filtering.ipynb) | | | | | | |
| [train-with-datasets](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets/datasets-tutorial/train-with-datasets.ipynb) | | | | | | |
| [configuration](https://github.com/Azure/MachineLearningNotebooks/blob/master//setup-environment/configuration.ipynb) | | | | | | |
| [img-classification-part1-training](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/img-classification-part1-training.ipynb) | | | | | | |
| [img-classification-part2-deploy](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/img-classification-part2-deploy.ipynb) | | | | | | |
| [regression-automated-ml](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/regression-automated-ml.ipynb) | | | | | | |
| [tutorial-1st-experiment-sdk-train](https://github.com/Azure/MachineLearningNotebooks/blob/master//tutorials/tutorial-1st-experiment-sdk-train.ipynb) | | | | | | |

View File

@@ -102,7 +102,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.0.60 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.0.62 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -184,11 +184,10 @@
"\n",
"## Explore data\n",
"\n",
"Before you train a model, you need to understand the data that you are using to train it. You also need to copy the data into the cloud so it can be accessed by your cloud training environment. In this section you learn how to:\n",
"Before you train a model, you need to understand the data that you are using to train it. In this section you learn how to:\n",
"\n",
"* Download the MNIST dataset\n",
"* Display some sample images\n",
"* Upload data to the cloud\n",
"\n",
"### Download the MNIST dataset\n",
"\n",
@@ -254,13 +253,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Now you have an idea of what these images look like and the expected prediction outcome.\n",
"\n",
"### Upload data to the cloud\n",
"\n",
"Now make the data accessible remotely by uploading that data from your local machine into Azure so it can be accessed for remote training. The datastore is a convenient construct associated with your workspace for you to upload/download data, and interact with it from your remote compute targets. It is backed by Azure blob storage account.\n",
"\n",
"The MNIST files are uploaded into a directory named `mnist` at the root of the datastore. See [access data from your datastores](https://docs.microsoft.com/bs-latn-ba/azure/machine-learning/service/how-to-access-data) for more information."
"## Create a FileDataset\n",
"A FileDataset references single or multiple files in your datastores or public urls. The files can be of any format. FileDataset provides you with the ability to download or mount the files to your compute. By creating a dataset, you create a reference to the data source location. If you applied any subsetting transformations to the dataset, they will be stored in the dataset as well. The data remains in its existing location, so no extra storage cost is incurred. [Learn More](https://aka.ms/azureml/howto/createdatasets)"
]
},
{
@@ -273,10 +267,44 @@
},
"outputs": [],
"source": [
"ds = ws.get_default_datastore()\n",
"print(ds.datastore_type, ds.account_name, ds.container_name)\n",
"from azureml.core.dataset import Dataset\n",
"\n",
"ds.upload(src_dir=data_folder, target_path='mnist', overwrite=True, show_progress=True)"
"web_paths = [\n",
" 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',\n",
" 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',\n",
" 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',\n",
" 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz'\n",
" ]\n",
"dataset = Dataset.File.from_files(path = web_paths)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use the `register()` method to register datasets to your workspace so they can be shared with others, reused across various experiments, and referred to by name in your training script."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset = dataset.register(workspace = ws,\n",
" name = 'mnist dataset',\n",
" description='training and test dataset',\n",
" create_new_version=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# list the files referenced by dataset\n",
"dataset.to_path()"
]
},
{
@@ -327,6 +355,7 @@
"import argparse\n",
"import os\n",
"import numpy as np\n",
"import glob\n",
"\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.externals import joblib\n",
@@ -334,7 +363,7 @@
"from azureml.core import Run\n",
"from utils import load_data\n",
"\n",
"# let user feed in 2 parameters, the location of the data files (from datastore), and the regularization rate of the logistic regression model\n",
"# let user feed in 2 parameters, the dataset to mount or download, and the regularization rate of the logistic regression model\n",
"parser = argparse.ArgumentParser()\n",
"parser.add_argument('--data-folder', type=str, dest='data_folder', help='data folder mounting point')\n",
"parser.add_argument('--regularization', type=float, dest='reg', default=0.01, help='regularization rate')\n",
@@ -345,10 +374,11 @@
"\n",
"# load train and test set into numpy arrays\n",
"# note we scale the pixel intensity values to 0-1 (by dividing it with 255.0) so the model can converge faster.\n",
"X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0\n",
"X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0\n",
"y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)\n",
"y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)\n",
"X_train = load_data(glob.glob(os.path.join(data_folder, '**/train-images-idx3-ubyte.gz'), recursive=True)[0], False) / 255.0\n",
"X_test = load_data(glob.glob(os.path.join(data_folder, '**/t10k-images-idx3-ubyte.gz'), recursive=True)[0], False) / 255.0\n",
"y_train = load_data(glob.glob(os.path.join(data_folder, '**/train-labels-idx1-ubyte.gz'), recursive=True)[0], True).reshape(-1)\n",
"y_test = load_data(glob.glob(os.path.join(data_folder, '**/t10k-labels-idx1-ubyte.gz'), recursive=True)[0], True).reshape(-1)\n",
"\n",
"print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep = '\\n')\n",
"\n",
"# get hold of the current run\n",
@@ -379,7 +409,7 @@
"source": [
"Notice how the script gets data and saves models:\n",
"\n",
"+ The training script reads an argument to find the directory containing the data. When you submit the job later, you point to the datastore for this argument:\n",
"+ The training script reads an argument to find the directory containing the data. When you submit the job later, you point to the dataset for this argument:\n",
"`parser.add_argument('--data-folder', type=str, dest='data_folder', help='data directory mounting point')`"
]
},
@@ -424,7 +454,23 @@
"* The training script name, train.py\n",
"* Parameters required from the training script \n",
"\n",
"In this tutorial, this target is AmlCompute. All files in the script folder are uploaded into the cluster nodes for execution. The data_folder is set to use the datastore (`ds.path('mnist').as_mount()`)."
"In this tutorial, the target is AmlCompute. All files in the script folder are uploaded into the cluster nodes for execution. The data_folder is set to use the dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.environment import Environment\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# to install required packages\n",
"env = Environment('my_env')\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk','scikit-learn','azureml-dataprep[pandas,fuse]>=1.1.14'])\n",
"\n",
"env.python.conda_dependencies = cd"
]
},
{
@@ -440,30 +486,16 @@
"from azureml.train.sklearn import SKLearn\n",
"\n",
"script_params = {\n",
" '--data-folder': ds.path('mnist').as_mount(),\n",
" # to mount files referenced by mnist dataset\n",
" '--data-folder': dataset.as_named_input('mnist').as_mount(),\n",
" '--regularization': 0.5\n",
"}\n",
"\n",
"est = SKLearn(source_directory=script_folder,\n",
" script_params=script_params,\n",
" compute_target=compute_target,\n",
" entry_script='train.py')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is what the mounting point looks like:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(ds.path('mnist').as_mount())"
" script_params=script_params,\n",
" compute_target=compute_target,\n",
" environment_definition=env,\n",
" entry_script='train.py')"
]
},
{
@@ -684,7 +716,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
"version": "3.6.9"
},
"msauthor": "roastala"
},

File diff suppressed because it is too large Load Diff