mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 09:37:04 -05:00
Compare commits
1 Commits
79971
...
dockerfile
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f8d4fec978 |
@@ -4,12 +4,13 @@ These examples show you:
|
||||
|
||||
1. [How to use the Estimator pattern in Azure ML](how-to-use-estimator)
|
||||
2. [Train using TensorFlow Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-tensorflow)
|
||||
3. [Train using Pytorch Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-pytorch)
|
||||
4. [Distributed training using TensorFlow and Parameter Server](distributed-tensorflow-with-parameter-server)
|
||||
5. [Distributed training using TensorFlow and Horovod](distributed-tensorflow-with-horovod)
|
||||
6. [Distributed training using Pytorch and Horovod](distributed-pytorch-with-horovod)
|
||||
7. [Distributed training using CNTK and custom Docker image](distributed-cntk-with-custom-docker)
|
||||
8. [Export run history records to Tensorboard](export-run-history-to-tensorboard)
|
||||
9. [Use TensorBoard to monitor training execution](tensorboard)
|
||||
3. [Train using Keras and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-keras)
|
||||
4. [Train using Pytorch Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-pytorch)
|
||||
5. [Distributed training using TensorFlow and Parameter Server](distributed-tensorflow-with-parameter-server)
|
||||
6. [Distributed training using TensorFlow and Horovod](distributed-tensorflow-with-horovod)
|
||||
7. [Distributed training using Pytorch and Horovod](distributed-pytorch-with-horovod)
|
||||
8. [Distributed training using CNTK and custom Docker image](distributed-cntk-with-custom-docker)
|
||||
9. [Export run history records to Tensorboard](export-run-history-to-tensorboard)
|
||||
10. [Use TensorBoard to monitor training execution](tensorboard)
|
||||
|
||||
Learn more about how to use `Estimator` class to [train deep neural networks with Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-ml-models).
|
||||
|
||||
@@ -0,0 +1,121 @@
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
import numpy as np
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import keras
|
||||
from keras.models import Sequential, model_from_json
|
||||
from keras.layers import Dense
|
||||
from keras.optimizers import RMSprop
|
||||
from keras.callbacks import Callback
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from azureml.core import Run
|
||||
from utils import load_data, one_hot_encode
|
||||
|
||||
print("Keras version:", keras.__version__)
|
||||
print("Tensorflow version:", tf.__version__)
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--data-folder', type=str, dest='data_folder', help='data folder mounting point')
|
||||
parser.add_argument('--batch-size', type=int, dest='batch_size', default=50, help='mini batch size for training')
|
||||
parser.add_argument('--first-layer-neurons', type=int, dest='n_hidden_1', default=100,
|
||||
help='# of neurons in the first layer')
|
||||
parser.add_argument('--second-layer-neurons', type=int, dest='n_hidden_2', default=100,
|
||||
help='# of neurons in the second layer')
|
||||
args = parser.parse_args()
|
||||
|
||||
data_folder = args.data_folder
|
||||
|
||||
print('training dataset is stored here:', data_folder)
|
||||
|
||||
X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0
|
||||
X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0
|
||||
|
||||
y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)
|
||||
y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)
|
||||
|
||||
training_set_size = X_train.shape[0]
|
||||
|
||||
n_inputs = 28 * 28
|
||||
n_h1 = args.n_hidden_1
|
||||
n_h2 = args.n_hidden_2
|
||||
n_outputs = 10
|
||||
|
||||
n_epochs = 20
|
||||
batch_size = args.batch_size
|
||||
|
||||
y_train = one_hot_encode(y_train, n_outputs)
|
||||
y_test = one_hot_encode(y_test, n_outputs)
|
||||
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep='\n')
|
||||
|
||||
# Build a simple MLP model
|
||||
model = Sequential()
|
||||
# input layer
|
||||
model.add(Dense(n_h1, activation='relu', input_shape=(n_inputs,)))
|
||||
# hidden layer
|
||||
model.add(Dense(n_h2, activation='relu'))
|
||||
# output layer
|
||||
model.add(Dense(n_outputs, activation='softmax'))
|
||||
|
||||
model.summary()
|
||||
|
||||
model.compile(loss='categorical_crossentropy',
|
||||
optimizer=RMSprop(),
|
||||
metrics=['accuracy'])
|
||||
|
||||
# start an Azure ML run
|
||||
run = Run.get_context()
|
||||
|
||||
|
||||
class LogRunMetrics(Callback):
|
||||
# callback at the end of every epoch
|
||||
def on_epoch_end(self, epoch, log):
|
||||
# log a value repeated which creates a list
|
||||
run.log('Loss', log['loss'])
|
||||
run.log('Accuracy', log['acc'])
|
||||
|
||||
|
||||
history = model.fit(X_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=n_epochs,
|
||||
verbose=2,
|
||||
validation_data=(X_test, y_test),
|
||||
callbacks=[LogRunMetrics()])
|
||||
|
||||
score = model.evaluate(X_test, y_test, verbose=0)
|
||||
|
||||
# log a single value
|
||||
run.log("Final test loss", score[0])
|
||||
print('Test loss:', score[0])
|
||||
|
||||
run.log('Final test accuracy', score[1])
|
||||
print('Test accuracy:', score[1])
|
||||
|
||||
plt.figure(figsize=(6, 3))
|
||||
plt.title('MNIST with Keras MLP ({} epochs)'.format(n_epochs), fontsize=14)
|
||||
plt.plot(history.history['acc'], 'b-', label='Accuracy', lw=4, alpha=0.5)
|
||||
plt.plot(history.history['loss'], 'r--', label='Loss', lw=4, alpha=0.5)
|
||||
plt.legend(fontsize=12)
|
||||
plt.grid(True)
|
||||
|
||||
# log an image
|
||||
run.log_image('Accuracy vs Loss', plot=plt)
|
||||
|
||||
# create a ./outputs/model folder in the compute target
|
||||
# files saved in the "./outputs" folder are automatically uploaded into run history
|
||||
os.makedirs('./outputs/model', exist_ok=True)
|
||||
|
||||
# serialize NN architecture to JSON
|
||||
model_json = model.to_json()
|
||||
# save model JSON
|
||||
with open('./outputs/model/model.json', 'w') as f:
|
||||
f.write(model_json)
|
||||
# save model weights
|
||||
model.save_weights('./outputs/model/model.h5')
|
||||
print("model saved in ./outputs/model folder")
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 119 KiB |
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,27 @@
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
import gzip
|
||||
import numpy as np
|
||||
import struct
|
||||
|
||||
|
||||
# load compressed MNIST gz files and return numpy arrays
|
||||
def load_data(filename, label=False):
|
||||
with gzip.open(filename) as gz:
|
||||
struct.unpack('I', gz.read(4))
|
||||
n_items = struct.unpack('>I', gz.read(4))
|
||||
if not label:
|
||||
n_rows = struct.unpack('>I', gz.read(4))[0]
|
||||
n_cols = struct.unpack('>I', gz.read(4))[0]
|
||||
res = np.frombuffer(gz.read(n_items[0] * n_rows * n_cols), dtype=np.uint8)
|
||||
res = res.reshape(n_items[0], n_rows * n_cols)
|
||||
else:
|
||||
res = np.frombuffer(gz.read(n_items[0]), dtype=np.uint8)
|
||||
res = res.reshape(n_items[0], 1)
|
||||
return res
|
||||
|
||||
|
||||
# one-hot encode a 1-D array
|
||||
def one_hot_encode(array, num_of_classes):
|
||||
return np.eye(num_of_classes)[array.reshape(-1)]
|
||||
Reference in New Issue
Block a user